
Detection of Threats to IoT Devices using Scalable
VPN-forwarded Honeypots

Amit Tambe
Aalto University, Finland

amit.tambe@aalto.fi

Yan Lin Aung
Singapore University of Technology

and Design, Singapore

Ragav Sridharan
Singapore University of Technology

and Design, Singapore

Martín Ochoa
Cyxtera Technologies

Nils Ole Tippenhauer
CISPA Helmholtz Center for

Information Security, Germany

Asaf Shabtai
Ben Gurion University, Israel

Yuval Elovici
Singapore University of Technology

and Design, Singapore

ABSTRACT
Attacks on Internet of Things (IoT) devices, exploiting inher-
ent vulnerabilities, have intensified over the last few years.
Recent large-scale attacks, such as Persirai, Hakai, etc. cor-
roborate concerns about the security of IoT devices. In this
work, we propose an approach that allows easy integration of
commercial off-the-shelf IoT devices into a general honeypot
architecture. Our approach projects a small number of het-
erogeneous IoT devices (that are physically at one location)
as many (geographically distributed) devices on the Internet,
using connections to commercial and private VPN services.
The goal is for those devices to be discovered and exploited
by attacks on the Internet, thereby revealing unknown vul-
nerabilities. For detection and examination of potentially
malicious traffic, we devise two analysis strategies: (1) given
an outbound connection from honeypot, backtrack into net-
work traffic to detect the corresponding attack command
that caused the malicious connection and use it to download
malware, (2) perform live detection of unseen URLs from
HTTP requests using adaptive clustering. We show that our
implementation and analysis strategies are able to detect
recent large-scale attacks targeting IoT devices (IoT Reaper,
Hakai, etc.) with overall low cost and maintenance effort.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Mal-
ware and its mitigation;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
CODASPY ’19, March 25–27, 2019, Richardson, TX, USA
© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6099-9/19/03. . . $15.00
https://doi.org/10.1145/3292006.3300024

KEYWORDS
High-Interaction IoT Honeypot; Network Traffic Analysis;
Intrusion Detection; Attack Attribution; Adaptive Clustering
ACM Reference Format:
Amit Tambe, Yan Lin Aung, Ragav Sridharan, Martín Ochoa,
Nils Ole Tippenhauer, Asaf Shabtai, and Yuval Elovici. 2019. De-
tection of Threats to IoT Devices using Scalable VPN-forwarded
Honeypots. In Ninth ACM Conference on Data and Applica-
tion Security and Privacy (CODASPY ’19), March 25–27, 2019,
Richardson, TX, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3292006.3300024

1 INTRODUCTION
Internet of Things (IoT) is envisioned as a network of things
that have physical or virtual representation in the digital
world, sensing/actuation capability, a programmability fea-
ture and are uniquely identifiable [16]. IoT devices such as
smart TVs or smart speakers are becoming increasingly ap-
pealing to consumers [24]. Gartner’s study estimates almost
20.4 billion IoT devices to be in use by the year 2020 [25]. Due
to the nature of emerging markets for IoT devices, manufac-
turers focus their attention mainly on the core functionalities
of products and rush to introduce them in the market [27].
Security aspects of these devices are thus often neglected.
Consequently, IoT devices having security vulnerabilities are
launched in the market thereby exposing them to targeted
exploits in large-scale attacks [5, 20, 27]. Recent large-scale
attacks such as Hakai [2] and IoT Reaper [26] demonstrate
the gravity of threats faced by IoT devices, exploiting multi-
ple vulnerabilities present due to the heterogeneous nature
of IoT devices. Further, exploitation of IoT devices to attack
critical infrastructure has become a common attack vector,
raising significant concerns for the stakeholders involved [15].
Goal – The goal of this work is to detect new attack waves
targeting IoT devices, in particular, the ones leveraging 0-day
vulnerabilities for specific devices. Honeypots are commonly
used to learn about attacks “in the wild”. By utilizing hon-
eypots for IoT devices, we aim to detect large-scale attacks
that are able to compromise a large class of IoT devices (such
as Mirai that uses easy/default credentials to get shell access

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

85

https://doi.org/10.1145/3292006.3300024
https://doi.org/10.1145/3292006.3300024

to a device), as well as attacks that exploit vulnerabilities in
specific IoT devices (such as Persirai that uses faulty access
control in specific versions of the embedded web server).

Honeypots for IoT devices can be implemented by emulat-
ing a selected set of services (e.g. Telnet [19]). As a result,
attacks using services that are not emulated cannot be de-
tected. Moreover, attackers could try to identify honeypots
(e.g., by checking error handling, or detecting emulation or
virtualization [19]). Additionally, due to their heterogeneous
nature, reusing an already emulated IoT device to represent
another device cannot guarantee replication of vulnerabilities.

Our contribution – We propose to detect novel attacks on IoT
devices by leveraging real devices to build a scalable VPN-
forwarded honeypot. In our work, we use real IoT devices to
faithfully expose their behavior without requiring occasional
enhancement of exposed environment to adapt to changing
attack vectors (as in the case of emulated devices). However,
using only a few real devices might not provide sufficient
network traffic to gain valuable insight. On the other hand,
an increasing number of real devices is neither cost-effective
nor scalable. Hence, to increase the statistical chance of being
attacked, we create multiple VPN tunnels, forwarding the
traffic of a single physical device to several IPs worldwide.
VPN tunnels are used to acquire public IP addresses and
expose IoT devices on the Internet as part of our proposed
honeypot. At the same time, connecting to multiple VPN
servers in different countries allows devices in the honeypot
to establish a geographically diverse virtual presence, which
is essential for detecting large-scale attacks.

Next, we propose two live traffic analysis strategies for
detection and examination of potentially malicious traffic
received by honeypot. The first one starts with suspicious
events that indicate potential compromises, such as anoma-
lous communication attempts made by an IoT device in our
honeypot. By backtracking into the network traffic of the
device under potential attack, we can detect the malicious
command issued by an attacker that caused those anomalous
communication attempts. The second strategy allows live de-
tection of potential 0-day vulnerabilities by analyzing URLs
from HTTP requests. Over a period of time, the proposed
honeypot framework detected several large-scale attacks tar-
geting IoT devices (Persirai, Hakai, etc), with overall low
cost and maintenance effort.

Our contributions can be summarized as follows:
∙ Design of a honeypot framework that incorporates

commercial off-the-shelf (COTS) IoT devices for high-
interaction, utilizing low-cost commercial VPN providers

∙ An implementation of the proposed framework, demon-
strating an automated, scalable, and economical ap-
proach to integrate COTS IoT devices

∙ Two live traffic analysis methods to detect large-scale
attacks and subsequently 0-day vulnerabilities in IoT
devices using our honeypot infrastructure

The rest of this paper is organized as follows. Section 2
provides a brief background on honeypots and recent large-
scale attacks targeting IoT devices. We then present the

design of our honeypot framework and live traffic analysis
strategies in Section 3. The implementation of the honeypot
is explained in Section 4, followed by the results of evaluation
of network traffic captured by the proposed honeypot in
Section 5. We summarize the related work in this field in
Section 6 and conclude the paper in Section 7.

2 BACKGROUND
2.1 Honeypots
A Honeypot is a closely monitored computing resource that
we want to be probed, attacked, or compromised. More
precisely, a honeypot is “an information system resource
whose value lies in unauthorized or illicit use of that re-
source” [21]. Honeypots have traditionally been used by secu-
rity researchers to present decoy systems to attract attackers
and learn from their behavior. With the knowledge gained
from this, researchers can then apply techniques to prevent
such attacks in the future. In general, honeypots can be
classified as follows:
High and Low Interaction – High interaction honeypots present
real systems to attackers [17]. The main advantage of having
real systems is that there is no reason to emulate anything,
thus making them more convincing. These type of honeypots
allow attackers to gain full access to the system enabling to
gain in-depth information about attacks and therefore qual-
itative results on attacker behavior. A drawback, however,
is their cost of implementation and maintenance due to the
usage of real systems, making them difficult to scale [21]. Low
interaction honeypots, on the other hand, present fully or
partially simulated or emulated environments (e.g. partially
implemented network stacks). They limit attackers’ interac-
tion with the honeypot and hence generate more quantitative
data [21]. Their real value lies in their ease to implement,
scale and maintain.

2.2 Recent large-scale IoT attacks
It is challenging to build realistic honeypots for IoT devices
mainly due to their heterogeneous nature [7]. Since IoT de-
vices are becoming more affordable, it motivates us to design
a high-interaction honeypot by incorporating real IoT devices.
Such a honeypot would allow detection of new threats to IoT
devices while keeping pace with evolving attack vectors.
Persirai – In May 2017, TrendMicro reported a new family
of IoT botnet named Persirai [1]. This malware infects cam-
eras that are susceptible to the vulnerability CVE-2017-8225
thereby allowing unauthorized access to the credentials of
vulnerable cameras [12]. The perpetrator issues a specifically
crafted HTTP request to retrieve system.ini file containing
credentials, irrespective of the strength of the password. Once
the attacker gains access to credentials, the device becomes
part of a botnet and scans for more IoT devices with the
same vulnerability to spread the malware.
Hakai – This malware campaign was reported recently by Palo
Alto Networks [2]. Hakai leverages the source code of Mirai
and Gafgyt malware families and continues the recent trend

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

86

of incorporating multiple exploits affecting several classes of
IoT devices. Attackers get access to the device using one of
the credentials from a dictionary of predefined factory-state
credentials of several devices. The malware further spreads
using methods similar to Mirai. However, Hakai has evolved
to support several new DDoS methods that were previously
unused by Mirai variants.

3 HONEYPOT FRAMEWORK AND
TRAFFIC ANALYSIS METHODS

The objective of our honeypot is to attract and detect (pos-
sible 0-day) large-scale attacks on IoT devices. We start by
outlining the attacker model and then identify salient features
that are necessary to design and implement a high-interaction
honeypot incorporating real IoT devices.

3.1 Attacker Model
We consider two types of attackers: attackers conducting
attacks manually, and attackers using automated scripts to
conduct large-scale attacks. In case of manual attacks, we
assume the goal of the attacker is to either explore exposed
devices or assess the effectiveness of exploits to be used in
subsequent large-scale attacks, by first testing manually on
a smaller set of devices. The attacker may interact with the
devices in a variety of ways such as inspecting configuration
of a printer or viewing a video on the camera. On the other
hand, in case of automated attacks, the goal of the attacker
is to identify as many vulnerable IoT devices as possible
(of the order of thousands [13]) and exploit those to recruit
in a botnet for conducting large-scale attacks. The motiva-
tion behind this is to rent such botnets on the underground
market to conduct DDoS style attacks [8]. In both cases, we
assume that the attacker is looking for real devices instead of
emulated devices, because real IoT devices provide access to
complete systems for exploitation and further proliferation
using possible 0-day vulnerabilities.

3.2 Design Considerations

Stealth – The identity of a honeypot, by its nature, should
stay concealed. Otherwise, it loses all of its value. When ex-
ploring IoT devices in the honeypot, an attacker conducting
manual attacks may try fingerprinting those devices. The
attacker may try to verify replies to executed commands, try
to interact with devices like cameras by zooming, tilting, etc.
It is essential, therefore, that the attacker be convinced of
the devices being real and present in the actual geolocations
indicated by their IP addresses. Some IoT devices (like IP
cameras) could unintentionally disclose Service Set Identi-
fiers (SSIDs) of the surrounding Wi-Fi networks through
their Wi-Fi settings. Similarly, devices with microphones can
capture audio, revealing inconsistencies from the purported
geolocation. These need to be prevented as either can reveal
the actual location of the honeypot.

Credibility and Robustness – To be credible, a honeypot needs
to be realistic. For example, an IP camera will be more cred-
ible if it shows realistic visuals instead of simply displaying
an empty wall. Attractive visuals closely mimicking realistic
scenarios increase the value of a honeypot by making it credi-
ble. Further, a honeypot should itself be secure, not allowing
attackers to take advantage of and compromise other devices
within the honeypot or outside. The value of a honeypot
increases if it can detect intrusion attempts and prevent the
proliferation of malware.

3.3 Honeypot Features
In this section, we describe the salient features of our proposed
high interaction honeypot.
Real devices – To make the honeypot credible, we use real
COTS IoT devices. We note that real devices allow full access
to the underlying system, thereby maximizing attack surface
for attackers. An attacker trying to fingerprint real devices,
by way of verifying return values of executed commands
or faithful reproduction of actions like camera zoom, can
be assured of their authenticity. In addition, we note that
using real devices allows for easier integration of new COTS
devices. To integrate a new device, we do not need to emulate
anything or gain low-level access to the device. Also, we argue
that novel (0-day) attacks on embedded devices (e.g. Persirai
that exploits a vulnerability in the web server [11]), can only
be fully observed on devices that expose this vulnerability.

Apart from using real devices, we also ensure that high
interaction devices, such as IP cameras, broadcast pertinent
and realistic videos, to enhance the credibility of our honeypot.
The goal is to maximize the attacker’s interactions with
devices in the honeypot, as long as possible.
Interaction Restrictions – To prevent IoT devices from expos-
ing SSIDs of surrounding Wi-Fi networks, wireless function-
ality of the devices should ideally be disabled. This can be
achieved either by software or hardware means. While the
software-based approach is low effort and convenient, it could
be circumvented by an attacker after gaining access to the
device. In order to prevent this, we prefer a hardware-based
approach to prevent the attacker from turning on Wi-Fi re-
motely or scanning neighboring Wi-Fi networks. Similarly,
devices such as IP cameras have sensors (e.g. microphones)
that could leak unwanted context information of the devices
(e.g. conversations in a lab setup). We need to identify a list
of such IoT devices, especially with known vulnerabilities
and disable their Wi-Fi chips and microphones.
Forwarding via VPN connections – The devices in our hon-
eypot will have to be reachable via a public IP accessible
by attackers. VPN providers offer such public IP addresses
from servers located in various countries, thereby providing
geographic diversity. Such diversity portrays the presence
of a device in a different location than its actual location.
IP addresses belonging to the pool of a large VPN provider
could potentially be identified as such, via online service [9].
However, being heuristic in nature, such identifications are
still prone to false positives [9]. In addition, we note that

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

87

Network
Data Analysis

Dashboard

VPN Forwarder

VM 1
A�acker

VPN Tunnel 3

IoT Network
VPN

Servers

Mic
Disabled

IP Camera

VM 2 VM 3

Printer

Devices under attack

WiFi
physically
removed

VPN Tunnel 2

VPN Tunnel 1

Firewall - Internet
Access Blocked

Figure 1: High level design of honeypot

services to identify VPN IPs usually require payment (which
makes them unattractive for a careful attacker). On the other
hand, even if free usage is allowed, it is usually restricted to
only a small number of requests, making them impractical
when conducting a large-scale attack consisting of hundreds
of IPs. As result, despite the existence of such services, the
efforts involved in using those services (in terms of time,
cost and utility) would make it unattractive for attackers
intending to conduct large-scale attacks.
Salient Attribute Extraction – Once the honeypot is deployed
and starts gathering large amounts of network data, it is es-
sential to parse and analyze traffic data efficiently. Crucial
attributes of data (such as attacker location, source IP rep-
utation, etc.) need to be extracted for data analyses. Once
these attributes are extracted and stored in a database they
can be reused later for data visualization.
Maintenance – Maintaining a honeypot and ensuring that it
performs its intended function is a critical requirement. As the
proposed honeypot scales by addition of new physical devices,
maintaining it manually becomes increasingly challenging. In
these circumstances, it is essential to automate the following
tasks of maintenance: (1) addition and setup of new devices
in the honeypot including associated VPN-forwarders and
traffic capturing, (2) removal of a device and (3) periodic
monitoring and logging of the health status of honeypot.
Putting it all together – Combining all these aspects, we
envisage a high-level design of the proposed honeypot as
shown in Figure 1. The design components include:

∙ Attacker – Attacker is a malicious entity targeting
our honeypot. This entity could be a person attacking
manually or an automated script.

∙ VPN Tunnels – These are public IP tunnels provided
by a VPN service provider connecting attackers to
VPN-forwarder.

∙ VPN-forwarder – These are Virtual Machines (VMs)
that acquire public IPs by establishing VPN tunnels.
They forward traffic back and forth between attackers
on the Internet and the real IoT devices in the internal
network. The VMs expose the same ports as open
ports on the real devices in their factory default state
to provide a credible environment.

∙ IoT Network – This is the VLAN that hosts all the real
IoT devices that are part of the honeypot. A firewall
is set up to prevent any newly initiated connections

Figure 2: Steps taken during traffic analysis of outbound con-
nections

from leaving the VLAN (for example, to prevent mal-
ware from propagating to hosts outside the VLAN).
Wireless connectivity of all devices connected to this
VLAN is disabled physically to prevent unintended ex-
posure of SSIDs of neighboring wireless networks. For
devices where physically disabling wireless connectivity
is not possible (like motion sensor, smart plug, etc.),
portable low-cost RF-enclosures can be deployed to
block wireless signals from outside.

∙ Firewall – This blocks any outbound connections ini-
tiated from the IoT Network, thereby restricting the
unintentional proliferation of malware.

∙ Dashboard – The dashboard component displays real-
time visualization of network traffic data after per-
forming analysis on it. It displays important data (e.g.
successful logins) and other suspicious behavior (e.g.
outbound connection attempts).

3.4 Network Traffic Analysis Methods
Outbound Connection Attribution. The first traffic analy-

sis method attributes attack commands based on detection
of suspicious outbound connections as shown in Figure 2.

Outbound Connection Detection – We continuously capture
all network traffic flowing to and from all IoT devices in our
honeypot for monitoring and analysis. In particular, we use
lightweight rules to detect outbound connections from devices.
Even though all unsolicited traffic to a honeypot is poten-
tially suspicious [21], spontaneous outbound connections can
be considered as potentially malicious (e.g. connections to
Command and Control (C&C) servers).

Event-driven Data Analysis – Once a suspicious event such
as an anomalous outbound connection attempt is detected,
we deploy computationally expensive packet inspection to
determine the malicious command (such as simple WGET
commands in a shell, HTTP configuration change requests,
etc.) that caused the outbound connection. We achieve this
by backtracking in the previously captured incoming traffic.

Malware Downloading – After obtaining the malicious com-
mand that caused the outbound connection, the downloader
component is triggered. It parses the obtained command and
establishes a separate outbound connection to the potentially
malicious server. After establishing a connection, the down-
loader then retrieves malware from the potential C&C server.
The malware downloaded is then analyzed further.

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

88

Table 1: Details of IoT devices used in honeypot

Device Model Vulnerabilities
(CVE)

IP Cameras
D-Link* DCS-942L 2017-7852
VStarcam* C7837 2017-5674
Aztech* WIP C409HD 2017-9765
Trendnet† TV-IP7621C –
Trendnet† TV-IP410 Yes [4]
Sineoji† PT528V 2017-9765

Other Devices
HP Printer* HP 6830 –
D-Link Router† DIR-615 2017-7404
Smartthings Hub* STH-ETH-200 Yes [6]
Smart Plug* Belkin Yes [23]
Motion Sensor* Belkin Yes [18]

* Factory state default password
† Modified password

Live Detection of Novel HTTP Requests. In the second
analysis method, we process live network traffic and extract
URLs from HTTP GET requests. The URLs are then for-
warded to a customized adaptive clustering component [10]
based on unsupervised learning, which we call as HONeypot
Novel HTTP Request ANalyzer (HONAN). Once deployed
in the honeypot, HONAN detects novel (i.e. unseen) URLs,
forms clusters and raises an alarm whenever a new cluster is
found.

4 IMPLEMENTATION OF
VPN-FORWARDED IOT HONEYPOT

In this section, we describe the implementation of a high
interaction IoT honeypot based on our proposed design.

4.1 Honeypot Implementation
Honeypot with Heterogeneous IoT Devices – The first step
in implementing the proposed honeypot is selection of IoT
devices that will be exposed on the Internet. We decided
to include different types of IoT devices in the honeypot to
provide a rich attack surface so as to detect recent threats
and potential vulnerabilities in those devices. A basic query
on Shodan search engine for IoT devices returns millions
of results [22]. IP cameras form a majority of these results,
closely followed by home routers, printers, etc. Starting with
the most targeted device in recent attacks – IP cameras,
we identified a list of cameras from different manufacturers,
especially with known vulnerabilities, to be incorporated in
our proposed honeypot. Similarly, we also identified other
types of IoT devices, some of which already have known
vulnerabilities. Table 1 shows a list of the real devices used
in our honeypot. For some devices we retained the default
factory state passwords, while for others the password was

Network
Data Capture

VPN Forwarder

A�acker

VPN TunnelInternet

IoT Network

VPN Server

IP Camera 1

Unrestricted
Interface

Restricted
Interface

S
o
ca
t

Firewall - Internet
Access Blocked

Figure 3: Implementation details for a VPN-forwarder

changed from factory default. The ‘Vulnerabilities’ column
indicates identified vulnerabilities for those devices with the
Common Vulnerabilities and Exposures (CVE) identifier (if
available).
Device Preparation –Next, to prevent those devices from ac-
cidentally disclosing neighboring Wi-Fi SSIDs thereby risking
exposure of the honeypot location, we disabled Wi-Fi and
microphones on the IP cameras at the hardware level. For
example, on D-Link DCS-942L camera, we removed the os-
cillator of Wi-Fi chip (MT7601U). For other devices, where
removing Wi-Fi chips was not possible (such as smart plug
or motion sensor), we made use of an electromagnetically
shielded enclosure to prevent nearby wireless signals from
reaching those devices.

As explained in the previous section, we aimed to have
realistic video images to avoid early detection of the honeypot
by attackers. For IP cameras, we achieved this objective in
two ways: (1) by constructing a setup involving jewelery items
and (2) replaying pre-recorded video of an industrial setting.
This method of projecting videos does not apply to other
device types (such as printer or smart plug).
VPN Provider – We chose a suitable VPN provider, by con-
ducting latency tests for several VPN service providers. Based
on the observed latencies and geographical diversity of the
provider’s servers, we rely on the services of ‘VPN Provider1’
(real name of selected VPN service provider is withheld in-
tentionally).
VPN-forwarder – This component plays a crucial role in the
implementation of the proposed honeypot by exposing the
IoT device’s interface on the Internet and then forwarding
traffic between the attacker and real device. As shown in
Figure 3, the VPN-forwarder is implemented as a virtual
machine running lightweight Ubuntu operating system. It
has two network interfaces:

Unrestricted Interface It has access to the Internet and
establishes a VPN tunnel with VPN Provider1. It is used by
attackers to gain access to devices in the honeypot.

Restricted Interface This interface connects to the isolated
VLAN ‘IoT Network’ to which all physical devices are con-
nected. The VLAN secures the honeypot by blocking any
outbound communication. Hence, any malware that could

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

89

possibly infect the honeypot is prohibited from proliferating
to other hosts outside the honeypot.

The VPN-forwarder uses Socat1 to transfer traffic from the
attacker on unrestricted interface to the real device through
the restricted interface, and the responses of the device back
to the attacker. The network traffic going through the VPN-
forwarder machine is captured using the tool TShark2 on
the unrestricted interface of the VPN-forwarder. This traffic
collection happens continuously and gathered pcaps are saved
on the file system of the physical host hosting the virtual
machines.
Visualization and Data Analytics Dashboard – We use the
dashboard to process and visualize raw data captured by
honeypot. First, we continuously capture network traffic in
honeypot by using TShark. To reduce processing of unwanted
raw data, an automated script periodically extracts informa-
tion such as HTTP credentials, HTTP URLs, geolocation
information of IP addresses, etc. from the raw data Tshark’s
‘ek’ option allows to generate JSON format output of that
information, for importing into Logstash and subsequent
indexing in Elasticsearch. Further, we use several custom
scripts that query elasticsearch to select the data that is
most pertinent (for example the number of successful logins
or outbound connection attempts by IP cameras). The results
of these queries are sent to Kibana component of the dash-
board for visualization. Simultaneously, we also store URLs
from HTTP GET requests filtered by TShark in a separate
CSV file. HONAN continuously monitors this file using adap-
tive clustering to detect novel URLs and displays resulting
clusters on a dashboard created using Shiny3 visualization
package.
Health Monitor and Framework Scalability – Building and
running a honeypot also entails efforts to ensure that it runs
continuously without disruption. It would be infeasible to
carry out this effort manually, once the honeypot scales with
addition of new devices or new VPN-forwarders. Therefore,
we have prepared a script called ‘Health Monitor’, which runs
periodically and performs a series of checks ensuring the cor-
rect functionality of the honeypot. These checks test whether:
(1) VPN-forwarders are running as expected, (2) VPN con-
nections are active, (3) TShark is capturing network traffic,
and (4) end-to-end communication (from VPN-forwarders to
IoT devices) is functional. The data produced by this script
is logged in a database and eventually gets visualized on
the Kibana dashboard to monitor the overall status of the
honeypot.

Similarly, we have devised custom scripts to automate the
process of addition and removal of devices to and from the
honeypot. These scripts automate the task of setting up a
new device including its associated VPN-forwarder, network
interfaces, VPN tunnels, traffic capturing using TShark and
traffic forwarding to the devices using Socat. Automating

1https://linux.die.net/man/1/socat
2https://www.wireshark.org/docs/man-pages/tshark.html
3https://shiny.rstudio.com/

these tasks greatly reduces manual efforts and is important
for scalability.
Scalability – In order to be scalable, the proposed honeypot
must be able to incorporate the increasing number of IoT
devices, VPN forwarders, and public IP addresses. One single
VPN forwarder virtual machine (VM) (running lightweight
Ubuntu operating system) requires minimum 256MB RAM
and 4GB hard disk space. Currently, we run these on a
physical host with 64GB RAM and 3TB of hard disk. If we
restrict the memory used by Virtual Box (our visualization
software) to 60GB, then a maximum of 240 VMs could be
hosted on the physical host. Therefore, one physical host
can accommodate up to 240 virtual machines connecting to
240 distinct public IP addresses. If more than 240 VMs are
required, an additional physical host could be integrated in
our honeypot increasing the capacity of the honeypot to 480
VMs. We have prepared scripts to automate the addition
of new virtual machines and collection of network traffic
irrespective of the physical host they are running on. Further,
all physical IoT devices in the honeypot are connected to a 24-
port switch. In our configuration, four ports of the switch are
utilized for – (1) incoming Internet connection, (2) mirroring
port, (3) management port and (4) connection to the physical
host. Thus, one switch can accommodate 20 physical IoT
devices which would then be portrayed as multiple virtual
devices across the Internet. Adding more than 20 physical
devices is possible by incorporating another network switch.
Local Coordinating Server – Apart from the main components
and tools mentioned above, we implement a local coordinating
server incorporating several other tools. MySQL database is
used to store most of the static data such as IP addresses
of devices, public IP addresses of VPN-forwarder machines
and dynamic data such as outbound connection attempts
detected. The tool Socat is used to establish a bidirectional
communication channel for transferring data and forwarding
traffic from the attackers to the devices and back. TShark
is used to capture two types of network traffic data – one
between attackers and devices, and another to capture inter-
device and device’s outbound communication. Rsync4 is used
to transfer json files between different machines.
Running cost – The honeypot implementation makes use of
a desktop machine to host all the VPN-forwarders and store
captured network traffic, and a second desktop machine to
host the analytics dashboard. Both these machines are a
one-time investment. The most important hardware invest-
ment in the honeypot is the IoT devices. The total one-time
investment of all the real devices in the honeypot is $1034.
The sole recurring cost for our setup is the fees paid to the
VPN service provider. These amount to $5.9 per month per
IP. Thus, for our entire honeypot consisting of 44 public
IP addresses, the monthly recurring cost is $259.6, making
it a cost-effective approach in studying attacker behavior
for threat detection. Apart from this, the Health Monitor
script periodically checks for any issues in the working of

4https://linux.die.net/man/1/rsync

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

90

the honeypot and reports those immediately. This reduces
the maintenance efforts as well. On an average, two man-
hours of maintenance effort are required per week to keep
the honeypot running.

4.2 Implementation of Network Traffic Analysis
Methods

To implement our proposed methods for live traffic analysis,
we took the following steps:
Outbound Connection Attribution

Data Capturing and Monitoring – We capture and
monitor all traffic going to and from IoT devices in the
honeypot. In particular, we detect traffic originating
from any of the devices. To capture such traffic, it is
necessary to tap into the network interface of devices
in the honeypot. We achieve this by using a TP-Link
switch (TL-SG1024DE) to host all real devices and use
mirroring port capability of the switch. The mirroring
port mirrors traffic that is generated on another port of
the switch. This technique lets us capture all traffic at
one place (mirroring port) without resorting to individual
capturing on devices. We use TShark for capturing traffic
on the mirroring port and TShark’s ‘ringbuffer’ option to
rotate captured PCAP files. Every PCAP file is parsed
as soon as it is rotated by TShark.

Event Detection and Reputation Check – Next, we
monitor every PCAP file for identifying (potentially)
suspicious events like outbound connections. Outbound
attempts are detected as attempted connections to IP
addresses outside the VLAN of honeypot, specifically
to public IP addresses. Outbound TCP connections are
identified using TCP flags in the captured traffic (SYN
flag set and ACK reset). On the other hand, outbound
UDP traffic is identified as traffic originating from devices
in honeypot (known source IP) and destined for VLAN
outside of honeypot. Once outbound connections are
detected, we obtain Autonomous System Number (ASN)
information for those IP addresses. We subject those IPs
to reputation check using VirusTotal, which provides
an interface to many aggregated antivirus products and
online scan engines. Next, we examine outbound DNS
requests for potentially malicious domain names. All
the data from this first round of lightweight parsing are
stored in the database for further analysis.

Outbound Connection Attribution – We argue that
a malicious outbound connection attempt (potentially
to C&C server) is the effect of an attack command is-
sued previously by an attacker. We, therefore, perform
packet inspection of historical data, to attribute every
outbound connection attempt to its corresponding attack
command. We start backtracking by identifying the out-
bound IP, IP of the device and the protocol over which

Figure 4: Detailed view of malware downloader

the device communicates, and then filtering historical
PCAP data accordingly. We inspect a maximum of 30
min of historical data. This is because our goal is to
detect large-scale attack campaigns that are generally
short-lived. We perceive this as typical attacker behav-
ior in such attack campaigns and therefore argue that
an outbound connection would immediately follow an
exploit attempt, for the attacker to maximize his advan-
tage. We backtrack in incremental steps until we identify
the packet and hence the command that caused the out-
bound attempt. We thus attribute an attack (exploit
attempt) to an outbound connection. It may happen
that some outbound connections cannot be attributed
to their attack commands/exploit attempts. This can
happen when an attacker tries to craft malware binary
on the device manually. However, as our results in Sec-
tion 5 show, we are able to attribute the high percentage
of outbound connection attempts to attack commands.

Malware Downloading –Performing outbound connec-
tion attribution reveals the original attack command
that caused the outbound connection. The next step is
to complete this connection with the malicious server
and download attack payload. Allowing this operation
on the devices in honeypot poses a risk of unknown mal-
ware taking control of devices and possibly the honeypot
along with neighboring networks. As such, we devise a
separate component, called ‘malware downloader’, that
runs on Ubuntu OS and performs this step of malware
downloading. Figure 4 shows the steps taken by the
malware downloader when downloading malware. We
implemented this component for WGET and TFTP com-
mands. It includes a listener that continuously listens
for new messages (a message indicates new attack com-
mand was attributed to an outbound connection). Every
new message is then parsed to extract the command
and then, if required, modified (example, conversion of
TFTP options from busybox to Ubuntu). The attack
command is then executed to establish a connection with
the potential C&C server and download malware.
Novel HTTP Request Analyzer
Implementation of HONAN, which performs unsuper-
vised adaptive clustering of URLs is shown in Figure 5.
First, network traffic from mirroring port of our honeypot
is processed in real-time. Using TShark tool, timestamps

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

91

Data Processing

Network Switch

Mirroring Port

CSV
Data Extractor

Leveshtein
Distance Calculation

Existing Cluster

Recompute μ and σ

New Cluster

Initialize μ and σ

IP Camera

Printer

Figure 5: Implementation of adaptive clustering

and HTTP GET request URLs are extracted and stored
in a CSV file. Typically, URLs consist of three parts:
hostname, path and parameters. A series of regular ex-
pressions are applied on the URLs to represent them in
a generic way while preserving their inherent variations.

After applying regular expressions, HONAN uses adap-
tive clustering to detect previously unseen URLs that
can be potentially malicious. In this technique, we first
calculate the distance of incoming URL with the cen-
troids, 𝑐𝜇, of existing clusters using Levenshtein distance
string metric. If the distance to the closest cluster 𝑑
is within a threshold of 𝑛× 𝜎 (𝜎 = standard deviation
of the cluster), we add the incoming URL to the clos-
est cluster and recompute the mean, 𝜇, and 𝜎 of that
cluster. Otherwise, if 𝑑 ≥ 𝑛 × 𝜎, we form a new cluster
and initialize 𝑐𝜇 with the incoming URL and 𝜎 with a
large number (50 in our case). 𝑛 is a user-defined pa-
rameter which is experimentally set to 1 in our work. As
more URLs get added to a cluster, 𝜇 (mean of cluster)
gets updated using equation 1 and 𝜎 is updated using
equation 2. Finally, to recompute cluster centroids, we
calculate the mean salience value of the URLs in the clus-
ter using Term Frequency - Inverse Document Frequency
(TF-IDF) algorithm. TF-IDF scores the importance of
tokens in a URL based on their occurrences within the
URL and the cluster.

𝜇 =
𝑛𝑐 × 𝜇 + 𝑑

𝑛𝑐 + 1 (1)

𝜎 =

⎯⎸⎸⎷⃒⃒⃒⃒
⃒
(︀
𝑛𝑐 *

(︀
𝜎2 + 𝜇2

)︀
+ 𝑑2

)︀
𝑛𝑐 + 1 − 𝜇2

⃒⃒⃒⃒
⃒ (2)

where 𝑛𝑐 = number of URLs in existing cluster and 𝑑 =
distance to closest cluster.

5 RESULTS
Our honeypot implementation projected 12 physical IoT
devices as 44 exposed devices in 15 cities across nine
countries. This setup has been running for 15 months and
accumulated over 365GB of network traffic data. This
section presents observations from the analysis performed
on the captured traffic data.

Figure 6: Geographical diversity of outbound connections
from honeypot. The size of circle depicts number of connec-
tions attempted to IP addresses in that geolocation.

5.1 Live Network Traffic Analysis
When performing network traffic analysis, our goal is
to detect large-scale attacks that function by compro-
mising devices in the honeypot. To detect compromise
of a physical device we utilize knowledge gained from
detecting outbound connections and analyzing HTTP
requests. Since IoT devices typically do not make out-
bound connections, we consider all outbound connections
as suspicious and potentially malicious. We therefore
continuously parsed traffic data for detecting outbound
connections and applied our threat detection methods to
detect attacker commands that caused those outbound
connections. Similarly, we also considered unseen URLs
detected by HONAN as suspicious.

Outbound Connections –We parsed all network traffic
to detect TCP and UDP connections that were initiated
by devices in the honeypot to an IP address that lies out-
side its VLAN. We analyzed 365GB of PCAP file data
and detected over 150 million connection attempts to
4642 distinct IP addresses. Those 150 million attempts
included several retries since we block outbound connec-
tions from the honeypot. We analyzed the geolocations
of all those 4642 IP addresses to understand the locations
of potential C&C servers and observed that connections
were made to IP addresses in 109 countries. Figure. 6
shows a map representing the geographical diversity of
outbound connections made by devices in the honeypot.
Additionally, as part of outbound connection discovery,
we also detected DNS requests made by devices and
found requests to 4720 unique domains. Those also in-
cluded device manufacturer domains, presumably for
device software updates.

Attack Attribution – After detecting outbound connec-
tion attempts, we applied our attack attribution method.
Knowing the destination IP and protocol of communi-
cation, we backtracked into PCAP traffic to attribute
attack commands to corresponding outbound connec-
tions. For example, upon detecting a connection attempt

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

92

to TARGETIP via TFTP protocol, we backtracked into
PCAP traffic to detect the attack command as

/bin/busybox tftp -g -l dvrHelper -r dlr.arm
TARGETIP;

We were able to attribute attack commands for 4527
out of 4642 (97.5%) distinct IPs. This high percentage of
attack attribution leads to extraction of malicious com-
mands from PCAP traffic and downloading of malware.

Lightweight Backtracking – Backtracking performed for
attack attribution was lightweight. 4018 IPs out of 4527
(89%) were attributed by backtracking between 0 to
5 seconds only. We attributed the remaining 509 IP
addresses by backtracking up to 120 seconds. We were
unable to attribute the remaining 105 (3%) IPs. In those
cases, the attacker created malware binaries manually
on the devices which caused outbound connections.

Malware Downloading – We ran the malware downloader
component for a period of 45 days from 1𝑠𝑡 July 2018.
In this time period, we allowed the malware downloader
to execute attack commands detected from outbound
connections and download potential malware. This re-
sulted in 180 distinct files being downloaded. Those files
consisted of 78 malicious binaries and 102 other text
files. The 78 distinct malware binaries collected belong
to multiple processor architectures, such as ARM and
MIPS. The remaining text files gave further instructions
to download actual malware binaries.

Novel HTTP Request Analyzer – HONAN analyzed
365GB of PCAP files captured from 11th April 2017
to 30th July 2018. We trained HONAN with URLs ex-
tracted from network traffic PCAP files captured be-
tween 11th Apr and 26th Jun 2017. We removed poten-
tial attack URLs before training and noted 2752 clusters.
After training was completed, we tested HONAN with
previously excluded attack URLs and found new clusters
for each of those. After training and testing, we deployed
HONAN on our honeypot on 31st July 2017. Since then,
HONAN has identified 1259 new clusters till 30th July
2018. These new clusters included clusters representing
large-scale attacks on IoT devices such as Persirai, IoT
Reaper, Owari and Hakai. A malware family may utilize
different HTTP request URLs to compromise multiple
vulnerabilities in IoT devices (e.g., as the case with IoT
Reaper). As a single attack can consist of multiple exploit
URLs, it can be represented by more than one cluster.
Further, after deploying HONAN, we noted new clusters
that representing novel HTTP requests which did not
particularly target IoT devices.

Apr
2017

Jan
2018

Aug
2018

Persirai
19 Apr
2017

Hajime
21 Apr
2017

Satori 1
22 Apr
2017

Mirai
21 Apr
2017

Bricker
Bot

22 Sep
2017

IoT
Reaper

21 Sep
2017

Owari
23 Apr
2018

Sora
25 Apr
2018

Hakai
29 May
2018

Satori 2
15 Sep
2017

Seraph
6 Jul
2018

Aug
2017

Figure 7: Timeline of malware families detected automatically
(as new clusters) by our honeypot.

U
S

A
 1

4%

UK 9%

Slovakia 6%
Israel 8%China 64%

(a) Origin

V
st

ar
ca

m
: 9

%

Trendnet: 1
4%

Sineoji: 8%

D-Link: 64%

A
zt

ec
h:

 6
%

(b) Targeted vendor
Figure 8: Classification of incoming traffic to honeypot

5.2 Malware Activity Detected by Honeypot
The honeypot implementation using our proposed de-
sign has been running since April 2017. Since then, we
incorporated both our automated live traffic analysis
methods into the honeypot. These automated methods
have effectively detected several IoT malware attacks
while the attack campaigns were active. Figure 7 shows
the timeline of the honeypot. It depicts various malware
detected by honeypot since its inception.

5.3 Honeypot Traffic Characterization

Incoming Data Classification –Continuing our automated
live analysis, we analyzed 365GB of traffic received by
honeypot to gather statistics on incoming traffic. We
designed automated scripts to parse live network traf-
fic to extract various pieces of information. The scripts
obtained country of origin of incoming connections (to
understand geographic presence of attackers), ports that
received maximum traffic (to understand type of at-
tacks), and amount of traffic received by various devices
(to understand attacker preferred targets and therefore
vulnerabilities in devices).

Figure. 8a shows the distribution of connections re-
ceived by devices in honeypot, per country. We acknowl-
edge that attackers can tunnel their traffic through IPs
other than their own, to misrepresent their true location.
We observe that majority connections originated from
USA and China. We observed that 54% connections re-
ceived by honeypot were on Telnet port, while HTTP
ports received almost all of remaining 46% connections.

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

93

We observed that IP cameras received majority of connec-
tions in the honeypot, thereby indicating greater attacker
interest in those IoT devices as compared to other de-
vices like IP printer, smart switch, etc. We conjecture
this is because several recent large-scale attacks on IoT
devices target IP cameras. As shown in Figure. 8b, we
note that D-Link DCS-942L IP camera received most
connections among IP cameras.
Login Attempts – One of the intentions behind using
real devices in the honeypot is to provide a more realis-
tic environment to attackers as compared to emulated
devices and thus garner quality network traffic. The mo-
tivation behind our automated live traffic analysis is to
observe attacker behavior. For attackers to exploit de-
vices and execute malicious instructions, it is necessary
to first access the devices. A successful login is the most
straightforward way to gain such access. It is therefore
appropriate to analyze the collected data and search for
login attempts made on the devices.

Figure. 9 shows a boxplot of login attempts per month,
by attackers, via HTTP and Telnet, since the honeypot
became operational in April 2017. Each box represents
the range of number of login attempts in a month, while
the red line inside every box represents the median for
that data. Outliers are depicted as small red circles or
crosses, depending on their distance from median.

We parsed the collected network traffic to detect all
login attempts made by attackers. We detected attempts
made via HTTP and Telnet protocols. In all 610076
HTTP requests were received from 32290 distinct public
IP addresses. Of these, 86748 requests were attempts
to login using HTTP authentication header, with 9877
attempts being successful. We observed over 23000 dis-
tinct credentials being used in login attempts (including
several dictionary attacks). In case of single camera that
had its telnet port exposed, we detected 147663 login
attempts, from 4923 distinct IP addresses. Of these,
13959 attempts were successful. Thus, we detected 23836
combined successful logins over HTTP and Telnet. We
further scrutinized the successful logins to distinguish
those that caused outbound connections from other “be-
nign” successful logins. We detected 5136 such logins
that caused outbound connections.

Figures 9a and 9b show a comparison of total login
attempts made by attackers and the successful attempts.
Figure 9a shows that the number of login attempts in-
creased steadily, as can be seen from the gradual rise
in median values. Figure 9b represents successful logins
and depicts many outliers. Even though all successful
logins are signals for further inspection, outliers with
large values are considered as excellent candidates for
further probing of captured network traffic to detect

large-scale attacks. An examination of the successful
credentials used by attackers reveals that either they
were default factory state credentials of the devices or re-
trieved through exploits of commonly known vulnerabil-
ities. We conjecture the reason being increasing number
of automated scripts which assume that most IoT devices
are configured with unchanged factory state credentials.
Such scripts are easy for the attackers to generate and
yield quick results.
Honeypot Detection – Apart from attracting attackers,
maintaining stealth is also an important characteristic
of a honeypot. We therefore verified whether the devices
exposed by the honeypot have been detected as belonging
to a honeypot, using a tool created by Shodan, called
honeyscore5. The tool returns a score between 0.0 (not
a honeypot) and 1.0 (is a honeypot) for queried IP
addresses. Two out of 44 VPN-forwarders exposed by
our honeypot were assigned the highest score of 0.3, none
was detected as a honeypot.

5.4 Discussion
The proposed design allowed us to use few real devices
and project them as multiple devices, geographically
distributed around the world. Our design accommodated
various kinds of IoT devices, thereby ascertaining its
versatility and scalability. Based on the amount of traffic
received, analysis presented and shodan honeyscores, we
are certain that the honeypot was effective in attracting
attackers and was realistic enough to motivate attackers
to perform logins and other intrusion attempts.

However, we would like to acknowledge a few short-
comings with our design and implementation. First, a
determined and skilled attacker may be able to detect our
honeypot. For example, if the attacker can detect that
multiple VPN-forwarders represent the same physical
device, it can raise suspicion. However, the probability
of an attacker discovering this is low. We observed from
our collected network traffic that no attacker (single IP)
discovered all VPN-forwarders representing same device.

Similarly, our real cameras currently show engaging
but fabricated scenes. Though convincing and realistic
at first glance, they may not fool a determined attacker
for too long. Placing devices in realistic locations is an
alternative. However, that may raise privacy concerns.

6 RELATED WORK
Recently, few implementations of honeypots have emerged
with the goal of better understanding vulnerabilities,
threats and large-scale attacks targeting IoT devices. Pa
Pa et al. were the first to propose a honeypot exclusively

5https://honeyscore.shodan.io

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000

Month

T
o
ta

l
L
o
g
in

 A
tt
e
m

p
ts

(a) All login attempts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.01

0.1

1

10

100

1000

10000

Month

S
u
c
c
e
s
s
fu

l
L
o
g
in

 A
tt
e
m

p
ts

(b) All successful logins
Figure 9: Boxplot showing comparison of all login attempts and successful logins

for IoT [19]. Their work focuses on capturing Telnet-
based attacks on various IoT devices by means of a
honeypot called IoTPOT. It consists of a low-interaction
frontend responder cooperating with a high-interaction
backend virtual environment called IoTBOX. Anirudh
et al. presented a honeypot model for mitigating DoS
attacks exploiting IoT devices [3]. Their model imple-
ments a low-interaction honeypot and works alongside
an intrusion detection system (IDS). Their honeypot
handles suspicious events detected by the IDS to avert
a DoS attack. Luo et al. presented an automatic way
to build an IoT honeypot called IoTCandyJar [14]. It
utilizes publicly available IoT devices on the Internet
to gather responses for its own requests. They applied
heuristics and machine learning techniques to customize
the scanning procedure for improving response logic. This
extends the session longevity leading to higher chances of
capturing malware. All these existing works implement
honeypots for IoT devices by primarily creating virtual
environment or by emulating services. Unlike previous
works, Guarnizo et al. propose a high-interaction hon-
eypot platform called SIPHON, incorporating real IoT
devices [7]. They utilized cloud service providers (like
Amazon AWS) to expose IoT devices on the Internet
over geographically distributed IP addresses. However,
such IP addresses might be identified as honeypot by the
attacker as they belong to autonomous systems of cloud
services. Our approach overcomes this limitation by uti-
lizing public IP addresses assigned by VPN servers. For
an attacker executing a large-scale attack with thousands
of devices in his botnet, significant time and resources
are required to uncover the true identity of those VPN IP
addresses. Moreover, we make our honeypot stealthier by

physically disabling Wi-Fi connectivity and microphones.
Disabling Wi-Fi connectivity prevents attackers from
scanning neighboring SSIDs while disabling microphones
prevents leakage of conversations. More importantly, we
propose and implement two live traffic analysis methods
to detect novel HTTP requests and attribute attacks
corresponding to outbound connections. To the best of
our knowledge, we are the first to propose and implement
a comprehensive honeypot system that incorporates real
IoT devices, performs automated live traffic analysis and
captures malware.

7 CONCLUSIONS
In this work, we proposed a design for a generic honeypot
framework for IoT devices by utilizing VPN connections.
We collected real and high-interaction traffic of attacks
by achieving low effort exposure of COTS devices on mul-
tiple IP addresses that provided geographical diversity.
We implemented the proposed framework with 12 COTS
devices, including IP cameras, printers, smart plugs and
other smart devices. These devices were exposed on 44
IP addresses in 15 cities across nine countries. We incor-
porated several precautions to detect compromises and
mitigate proliferation of malware. We did not instrument
the COTS devices directly to detect compromise, but
relied on traffic analysis instead. We proposed and imple-
mented two live traffic analysis methods and deployed
those on the traffic being captured by the honeypot.

Based on the analysis of captured traffic, we observed
5136 successful and malicious login attempts resulting
in outbound connections. These connections were at-
tempted to 4642 distinct IP addresses across 109 coun-
tries. By applying our live traffic analysis methods, we

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

95

were able to attribute attack commands to 97.5% of
outbound IPs. Further, by incorporating live adaptive
clustering method we were able to detect several active
large-scale attack campaigns such as IoT Reaper, Hakai,
etc. We temporarily allowed outbound connections to be
established via malware downloader component, for a
period of 45 days, resulting in capture of 78 distinct mal-
ware binaries. Based on application of two automated
live traffic analysis methods, our honeypot was able to
effectively detect and attribute attacks to their corre-
sponding attack commands.

REFERENCES
[1] 2017. Persirai: New Internet of Things (IoT)

Botnet Targets IP Cameras. http://blog.
trendmicro.com/trendlabs-security-intelligence/
persirai-new-internet-things-iot-botnet-targets-ip-cameras/

[2] 2018. Unit 42 Finds New Mirai and Gafgyt IoT/Linux
Botnet Campaigns - Palo Alto Networks Blog.
https://researchcenter.paloaltonetworks.com/2018/07/
unit42-finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/.
(Accessed on 08/17/2018).

[3] M Anirudh, S Arul Thileeban, and Daniel Jeswin Nallathambi.
2017. Use of honeypots for mitigating DoS attacks targeted
on IoT networks. In Proceedings of Conference on Computer,
Communication and Signal Processing (ICCCSP). IEEE, 1–4.

[4] console cowboys. 2012. Trendnet Camera (Multiple Products) -
Remote Security Bypass. https://www.exploit-db.com/exploits/
36680/.

[5] Ang Cui and Salvatore J Stolfo. 2010. A quantitative analysis
of the insecurity of embedded network devices: results of a wide-
area scan. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC). ACM, 97–106.

[6] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Se-
curity analysis of emerging smart home applications. In Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 636–654.

[7] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia,
Martín Ochoa, Nils Ole Tippenhauer, Asaf Shabtai, and Yu-
val Elovici. 2017. SIPHON: Towards scalable high-interaction
physical honeypots. In Proceedings of the ACM Workshop on
Cyber-Physical System Security. ACM, ACM, 57–68.

[8] Thorsten Holz, Markus Engelberth, and Felix Freiling. 2009.
Learning more about the underground economy: A case-study of
keyloggers and dropzones. In European Symposium on Research
in Computer Security. Springer, 1–18.

[9] IP Intelligence. 2018. Free Proxy / VPN / TOR / Bad IP Detection
Service via API and Web Interface | IP Intelligence. https://
getipintel.net/. (Accessed on 01/03/2017).

[10] Thommen George Karimpanal and Erik Wilhelm. 2017. Identifica-
tion and off-policy learning of multiple objectives using adaptive
clustering. Neurocomputing 263 (2017), 39–47.

[11] Pierre Kim. 2017. Multiple vulnerabilities found in
Wireless IP Camera (P2P) WIFICAM cameras and vul-
nerabilities in custom http server. https://pierrekim.
github.io/blog/2017-03-08-camera-goahead-0day.html#
pre-auth-info-leak-goahead.

[12] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and
Jeffrey Voas. 2017. DDoS in the IoT: Mirai and Other Botnets.
Computer 50, 7 (2017), 80–84.

[13] Brian Krebs. 2016. KrebsOnSecurity Hit With
Record DDoS. https://krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/.

[14] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang.
2017. IoTCandyJar: Towards an Intelligent-Interaction Honeypot
for IoT Devices. In Proceedings of Blackhat.

[15] Bill Miller and Dale Rowe. 2012. A Survey SCADA of and Crit-
ical Infrastructure Incidents. In Proceedings of the 1st Annual
Conference on Research in Information Technology (RIIT ’12).
ACM, New York, NY, USA, 51–56. https://doi.org/10.1145/
2380790.2380805

[16] Roberto Minerva, Abyi Biru, and Domenico Ro-
tondi. 2015. Towards a definition of the Internet of
Things (IoT). IEEE Internet Initiative (May 2015).
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_
Definition_Internet_of_Things_Revision1_27MAY15.pdf

[17] Iyatiti Mokube and Michele Adams. 2007. Honeypots: concepts,
approaches, and challenges. In Proceedings of the annual south-
east regional conference. ACM, 321–326.

[18] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili,
Vijay Sivaraman, and Roksana Boreli. 2014. An experimental
study of security and privacy risks with emerging household appli-
ances. In Communications and Network Security (CNS), 2014
IEEE Conference on. IEEE, 79–84.

[19] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu
Matsumoto, Takahiro Kasama, and Christian Rossow. 2016. IoT-
POT: A Novel Honeypot for Revealing Current IoT Threats.
Journal of Information Processing 24, 3 (2016), 522–533.

[20] Mark Patton, Eric Gross, Ryan Chinn, Samantha Forbis, Leon
Walker, and Hsinchun Chen. 2014. Uninvited connections: a
study of vulnerable devices on the internet of things (IoT). In
Proceedings of Intelligence and Security Informatics Conference
(JISIC). IEEE, 232–235.

[21] Niels Provos and Thorsten Holz. 2007. Virtual honeypots: from
botnet tracking to intrusion detection. Addison-Wesley Profes-
sional.

[22] Shodan Project. 2017. Shodan. https://www.shodan.io/. (Ac-
cessed on 10/18/2017).

[23] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli.
2016. Smart-phones attacking smart-homes. In Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks. ACM, 195–200.

[24] Vijay Sivaraman, Hassan Habibi Gharakheili, Arun Vishwanath,
Roksana Boreli, and Olivier Mehani. 2015. Network-level security
and privacy control for smart-home IoT devices. In Proceedings
of Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, 163–167.

[25] Rob van der Meulen. 2016. Gartner Says 8.4 Billion Connected
Things Will Be in Use in 2017, Up 31 Percent From 2016. http:
//www.gartner.com/newsroom/id/3598917.

[26] Yegenshen. 2017. IoT_reaper: A Rappid Spread-
ing New IoT Botnet. http://blog.netlab.360.com/iot_
reaper-a-rappid-spreading-new-iot-botnet-en/.

[27] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal,
and Chenren Xu. 2015. Handling a trillion (unfixable) flaws on a
billion devices: Rethinking network security for the internet-of-
things. In Proceedings of the ACM Workshop on Hot Topics in
Networks. ACM.

Session 2: IoT/Smart Device Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

96

http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://researchcenter.paloaltonetworks.com/2018/07/unit42-finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/
https://researchcenter.paloaltonetworks.com/2018/07/unit42-finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/
https://www.exploit-db.com/exploits/36680/
https://www.exploit-db.com/exploits/36680/
https://getipintel.net/
https://getipintel.net/
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html#pre-auth-info-leak-goahead
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html#pre-auth-info-leak-goahead
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html#pre-auth-info-leak-goahead
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://doi.org/10.1145/2380790.2380805
https://doi.org/10.1145/2380790.2380805
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://www.shodan.io/
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/

	Abstract
	1 Introduction
	2 Background
	2.1 Honeypots
	2.2 Recent large-scale IoT attacks

	3 Honeypot Framework and Traffic Analysis methods
	3.1 Attacker Model
	3.2 Design Considerations
	3.3 Honeypot Features
	3.4 Network Traffic Analysis Methods

	4 Implementation of VPN-Forwarded IoT Honeypot
	4.1 Honeypot Implementation
	4.2 Implementation of Network Traffic Analysis Methods

	5 Results
	5.1 Live Network Traffic Analysis
	5.2 Malware Activity Detected by Honeypot
	5.3 Honeypot Traffic Characterization
	5.4 Discussion

	6 Related Work
	7 Conclusions
	References

