
WADAC: Privacy-Preserving Anomaly Detection and A�ack
Classification on Wireless Tra�ic

Ragav Sridharan
Singapore University of Technology

and Design (SUTD)
Somapah Road 8
Singapore 487272

ragav_sridharan@sutd.edu.sg

Rajib Ranjan Maiti
Singapore University of Technology

and Design (SUTD)
Somapah Road 8
Singapore 487272

rajib_maiti@sutd.edu.sg

Nils Ole Tippenhauer
Singapore University of Technology

and Design (SUTD)
Somapah Road 8
Singapore 487272

nils_tippenhauer@sutd.edu.sg

ABSTRACT
In this work, we address the problem of detecting application-layer
attacks on nearby wireless devices. In particular, we assume that
the detection scheme is limited to link-layer tra�c (either because
schemes such as WPA2 are used, and the key is unknown, or to
preserve user privacy). Such a setting allows us to detect attacks
in nearby third party networks that we are not associated with,
unlike related work that relies on wireline taps to observe tra�c.
We propose and implement a framework consisting of an anomaly
detection module (unsupervised), and an attack classi�cation mod-
ule that identi�es a known set of attacks (supervised). We evaluate
our prototype with experiments including a range of attacks. For
example, we demonstrate that the anomaly detector detects Mirai
C&C tra�c by an IoT device (without training with Mirai). In ad-
dition, we detect that the Mirai infected device is attacking other
devices with 96.1% accuracy. We show that our prototype can be
applied to di�erent wireless standards (such as 802.11 (WiFi) and
802.15 (Zigbee)) and detect attacks with an accuracy of 96%-99%.

1 INTRODUCTION
In recent years, the number of IoT devices has increased dramat-
ically, thereby increasing threats to security and user’s privacy.
With the extensive adoption of IoT devices in various areas such
as health monitoring, smart homes, industrial and public control,
the number of IoT-related attacks has increased [17, 33]. Recently,
large-scale campaigns by botnets such as Mirai [5] have targeted
IoT devices. Compromise of devices often goes undetected, as end
users are ignorant of such threats [14, 15]. Thus, compromised
IoT devices can be used to launch attacks such as a large-scale
distributed denial of service (DDoS) attack [1].

Intrusion Detection Systems (IDS) can help users to detect com-
promised devices in their network. IDS can observe network tra�c
at di�erent layers of the OSI model. Tra�c collected at the network-
layer (or above) provides information about the application and
user, which could be considered to violate the user’s privacy [16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’18, Stockholm, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5731-9/18/06. . . $15.00
DOI: 10.1145/3212480.3212495

Such tra�c is typically collected using a network tap (or by plac-
ing the IDS in the path of the tra�c), only possible for network
operators.

In this paper, we show that it is possible to perform anomaly de-
tection and attack classi�cation using wireless link-layer tra�c only,
without access to network-layer (and above) payload. In particu-
lar, this would allow a passive IDS to perform anomaly and attack
detection on a third party network in the neighborhood, even if
network-layer (and higher) data is encrypted. Using link-layer data,
we propose and implement a framework consisting of an anom-
aly detection module (unsupervised), and an attack classi�cation
module that identi�es a known set of attacks (supervised). Since
the system does not access network-layer (and higher) data, we
argue that our proposed system poses only a minimal privacy threat
to the monitored devices or users. The system passively captures
(publicly available) wireless link-layer tra�c and extracts a set of
features. While such features do not include data from the network
layer (such as IP addresses), additional features related to control
and management frames are available (which are not present in
wireline tra�c). The features are then used by an unsupervised
classi�er (trained with benign tra�c) to detect anomalous tra�c
patterns. If an anomaly is detected, we use a supervised classi�er
to determine the type of attack (based on a set of learned attacks).
Identifying a known attack will help in proceeding with a partic-
ular mitigation strategy. We use cheap commercial-of-the-shelf
radios (COTS), and do not require tra�c captures from mirroring
ports, or Man-in-the-Middle setups. We test our proposed system
on WiFi-enabled IP cameras and smart bulbs, and Zigbee enabled
smart bulbs. By testing our system on various types of devices
using di�erent wireless protocols, we claim that our framework
can easily be applied to other wireless devices.

Our main contributions are summarized as follows:
• We design and implement a framework to passively de-

tect and identify application layer attacks by analyzing
link-layer features of encrypted wireless tra�c. A total
of 632MB of data (3.25 million WiFi and Zigbee frames) is
collected from di�erent IoT devices to build and test our
framework.

• Our experiments show that the detection mechanism reli-
ably detects 96.2% of attacks on IP cameras (e.g., brute-force,
�rmware, DoS), and classi�es them with 97% accuracy.

• We use our framework to detect IP camera infection by Mi-
rai. We detect a Mirai bot (an active IP camera) launching
attacks on other devices with 96.1% accuracy. Addition-
ally, our framework detects DDoS attacks on IoT devices,

51

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

Encrypted
Payload

CRC32
Checksum

Frame
Control

Duration Dest.
Address

Sender
Address

Receiver
AP Address

Seq.
Control

Transmitter
AP Address

16bits 16bits 48bits 48bits 48bits 48bits16bits 0-2312Bytes 32bits

Figure 1: IEEE 802.11 link-layer frame format with en-
crypted network-layer payload.

launched by Mirai botnet (formed using 3 D-Link cameras)
with 98.3% accuracy.

• We apply our proposed framework to a di�erent type of
device (TP-Link bulb using WiFi) and show that we detect
anomalies with more than 98.8% accuracy.

• Finally, we test our proposed framework on Zigbee based
smart bulb, and detect association �ooding attacks on the
Zigbee controller with 99% accuracy.

The paper is structured as follows. Section 2 presents speci�c
background information to align readers with our work. Section 3
describes the architecture of the proposed framework and the sys-
tem model. The implementation of our framework is elaborated
in Section 4. In Section 5, we discuss the experimental setup, and
di�erent datasets we build from the collected tra�c. We discuss
the results of applying our framework in di�erent scenarios in
Section 6. Section 7 draws comparisons of our work with related
works. Finally, we conclude our work in Section 8.

2 BACKGROUND
In this section, we review concepts essential for our framework.

2.1 Feature Extraction and Feature Selection
To ensure that privacy of user data is preserved, we extract a set of
features from frame headers of the link-layer, without decrypting
the encrypted payload (see Figure 1). We then select a subset of the
extracted features using information value (IV) of each feature. IV
quanti�es the in�uence a feature has in detecting an anomaly. IV
for a feature f1 is computed by �rst grouping the values of f1 into n
groups based on the distribution of anomalous and non-anomalous
tra�c. Then,

IV =

n∑
i=1

(f na
i − f am

i) ln(
f na
i
f am
i

) (1)

where f na and f am indicates the percentage of values that ac-
counts for non-anomaly and anomaly data respectively in each of
n groups. In this work, features having IV in the range of 0.5 to 1
are considered as reliable predictors.

2.2 Autoencoders
Anomaly detection can be done using either supervised or un-
supervised machine learning algorithms. It is di�cult to detect
unknown anomalies (not present in the training data) using super-
vised learning. Hence, in this study, we use autoencoder [9] which
is an unsupervised learning model.

An autoencoder tries to learn an approximation to the identity
function, to generate an output vector that is similar to its input
vector. In our case, the input vectors are features extracted from
non-anomalous tra�c. It takes a d−dimensional feature vector ~x
as input, represents it in a lower dimensions, and then reconstructs

a d−dimensional output vector ~x ′ with minimal information. The
most basic autoencoder (called vanilla-autoencoder) has one input
layer, one hidden layer, and an output layer. In the encoder phase,
the autoencoder reduces the input vector ~x to a lower dimension
vector ~h1 (also called as hidden layer):

~h1 = F (We~x + be) (2)

In the decoder phase, the autoencoder reconstructs the output from
the hidden layers. In a vanilla autoencoder, the output vector ~x ′ is
constructed from the output of the hidden layer ~h1:

~x ′ = F (Wd ~h1 + bd) (3)

Each layer has Weight and bias vectors (We and be in encoder phase,
andWd and bd in decoder phase) associated with it. The Weight
and the bias vectors are initialized randomly. Autoencoders are
trained to minimize the reconstruction error (e) between ~x and ~x ′:

e = ~x ′ − ~x (4)

Weight and bias vectors at each layer are recalculated using back-
propagation to minimize the reconstruction error during training.

In our work, we use deep autoencoders with tanh as the activation
function F, and stochastic gradient descent as the optimizer.

3 PRIVACY-PRESERVING ATTACK
DETECTION AND CLASSIFICATION

In this section, we discuss our system and adversary models. We
also describe our framework for anomaly detection and attack
classi�cation.

3.1 System Model and Attacker Model
Our system model consists of three actors. An IoT device, an
attacker, and our proposed detection system WADAC (Wireless
Anomaly Detection and Attack Classi�cation). The IoT device is
set up in a neighborhood connected using wireless technology (e.g.,
802.11 or 802.15), and the attacker is interacting with the IoT device
through the wireless medium.

The attacker’s goal is to use application-layer attacks to try and
compromise the IoT device. Once it is compromised, the attacker
would be able to perform di�erent attacks. WADAC is set up in the
proximity of both the IoT device and the access point (AP). It moni-
tors wireless tra�c and detects attacks without violating the user’s
privacy. We assume the IoT device uses a static channel to commu-
nicate with the infrastructure. WADAC continuously monitors that
channel from a distance to observe tra�c exchanged between the
IoT device and the AP. A third-party can operate WADAC without
access to network keys, and thus, it cannot associate to APs, or
decrypt intercepted tra�c payload.

3.2 Problem Statement
Our goal is to detect attacks that occur on layer 3 and above over
wireless links, without decrypting information at network-layer
(or above), thereby ensuring the privacy of users. As the likelihood
of attacks is not known apriori, we aim to develop an anomaly
detector that maximizes accuracy and raises minimum false alarms.
After detecting an anomaly, we want to identify the type of attack
based on a set of trained attack types.

52

Privacy-Preserving Anomaly Detection and A�ack Classification WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Internet

Traffic collection

Feature Extraction
& Selection

Anomaly
Detection

+Attack
Classifier

Figure 2: WADAC Framework

3.3 WADAC: Wireless Anomaly Detection and
Attack Classi�cation

WADAC has four modules: tra�c collector, feature extractor &
selector, anomaly detector, and attack classi�er. Figure 2 shows a
block diagram of our framework.

The tra�c collector module passively sni�s link-layer wireless
tra�c. It identi�es tra�c belonging to a particular device based on
the MAC address of the device. The feature extractor & selector
module �rst extracts features from the tra�c collected, and then
selects relevant features. The selected features are used by the
anomaly detector module to detect anomalies. If an anomaly is
detected, the attack classi�er module classi�es the anomaly into
one of the learnt sets of attacks. To test the performance of WADAC,
we develop a separate module called attack generator to perform
various attacks on di�erent IoT devices under observation.

Each wireless communication technology has its encryption
technique ensuring security and privacy of the communication. In
our work, we do not attempt to decrypt this encryption. Thus, we
claim that our system minimizes the privacy threat to the monitored
users. Our framework can be integrated into an existing network
structure without additional changes required.

3.4 Anomaly Detector and Attack Classi�er
The anomaly detector and the attack classi�er are the core mod-
ules of WADAC. In our problem, every attack is considered as an
anomaly. Once the anomaly detector module reports an anomaly,
the attack classi�er module identi�es the type of attack based on
the learnt set of attacks. The underlying intuition is that normal
IoT tra�c is highly regular, and thus autoencoders will perform
well to discriminate attacks.
Anomaly Detector. This module uses autoencoders to detect
anomalous tra�c patterns. By (unsupervised) training on nor-
mal tra�c, autoencoders learn a pair of non-linear transformations:
A mapping from the original space to hidden space (encoder) and
a mapping back from hidden space to the original one (decoder).
These transformations help to reconstruct normal tra�c with mini-
mal reconstruction errors. Since attacks are rare and di�erent, any
data point with a reconstruction error larger than a given threshold
is considered an anomaly. Choosing an optimal threshold is vital for
anomaly detection. We may not detect any attack if the threshold
is very large. Likewise, a small threshold would raise many false
alarms. To select an optimal threshold, we analyze the accuracy,

sensitivity and speci�city achieved by di�erent threshold values.
In this work, we experiment with multiple threshold values (Eth)
calculated using the following formula:

Eth = P + x ∗ IQR (5)

where P varies from 0th percentile to 100th percentile of reconstruc-
tion errors and we take x from the set of values {0,1,1.5}. IQR is the
Inter Quantile Range of reconstruction errors. IQR is calculated as:

IQR = P75th − P25th (6)

Attack Classi�er. In the attack classi�er module, we perform
supervised training of a random forest model [12], using a known
set of attacks. We then deploy this model to check if the anomaly
detected belongs to a known set of attacks.

4 SYSTEM IMPLEMENTATION
All modules in WADAC are developed and implemented using open-
source tools based on Python and R1. Each module has minimal
dependency with other modules. This gives the user an option to
either use the complete framework as a single unit or to use any
module independently.

4.1 Attack Generator
We test the performance of WADAC by performing various attacks
on di�erent IoT devices using the attack generator module. This
module �nds target IoT devices in the network using arp-scan
and launches various attacks on them. In particular, we do port
scans, vulnerability checks, brute force Telnet logins, Denial of
Service (DoS), Distributed Denial of Service (DDoS), Mirai and
Zigbee �ooding attacks. Table 7 in Appendix A shows the list of
attacks implemented on di�erent devices. Three di�erent devices
(a laptop, a smartphone, and a tablet) connected to the AP are used
to implement these attacks.
Mirai. Launching a Mirai attack involves two stages. In the �rst
stage, a control and command (C&C) server is set up and then the
Mirai bot is installed on the target IoT device. In our experiment
we install the Mirai bot on a D-Link camera (model DCS-942L B).
Both the C&C server and the D-Link camera are connected to the
same network via a wireless AP over WiFi. We install Mirai on
the camera via a Telnet session similar to the original process.In
the second stage, attacks (such as DDoS) are launched on other IoT
devices using the D-Link camera as a Mirai bot.
Vulnerability checks andTelnet brute-force. We use nmap [30]
to check for open ports and vulnerabilities. We also use nmap to
perform Telnet brute-force attacks.
DoS. DoS attacks can either be launched by using existing tools
or by using custom-built Python scripts. To perform DoS using an
existing tool, we use Slowloris [40] which is a nmap based HTTP
DoS attack tool. Slowloris performs a large number of partial HTTP
requests without allowing the TCP session to close. This exhausts
server resources and prohibits the server from establishing new
legitimate connections. To get more control over the rate and the
type of tra�c causing DoS, we develop a custom-built Python script
to launch speci�c DoS attacks such as UDP �ooding.

1The source code and sample data is available at https://github.com/scy-phy/wadac.

53

https://github.com/scy-phy/wadac

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

DDoS. We use customized DDoS attacks using four malicious ap-
plications on an android smartphone and two android tablets. The
applications include DDOS app [7], Terminal Emulator for Android
[32], Packets Generator [20] and AnDOSid [19].
Firmware. We included remote �rmware upgrades as an attack
example, as it can be part of a more complex attack. In any case,
we argue that �rmware changes are noteworthy events to detect.
Zigbee �ooding attacks. Unlike WiFi-based devices, IoT devices
using wireless technologies such as Zigbee are not connected to the
Internet directly. These devices are connected to a mother controller
which is connected to the Internet via wired or wireless medium.
To launch Zigbee �ooding attacks, the attacker needs to be in the
physical neighborhood of the device. The attacker can target either
the mother controller or actual Zigbee devices. We use KillerBee
tool [39] to launch Zigbee �ooding attacks.

4.2 Tra�c Collector
Our tra�c collector module sni�s wireless frames using COTS ra-
dios, extended from a prior work setup [27]. Speci�cally, a TP-Link
150Mbps high gain adapter is used to capture WiFi tra�c, and an
Atmel RZ Raven USB Stick is used to collect Zigbee tra�c (com-
patible with KillerBee). The WiFi adapter is capable of performing
channel hopping through 14 WiFi channels. Sni�ng tra�c from
the same channel as the AP helps to collect more data frames. In
our experiments, we collect tra�c in two scenarios. In the �rst case,
we allow the adapter to hop on di�erent channels. In the second
situation, we align our adapter and the access point to work on a
same channel. The range and the physical location of the adapter
also plays a signi�cant role in controlling tra�c capture [6]. We
collect tra�c by placing our adapter within a distance ensuring
minimal packet loss.

The tra�c collector module uses scapy [11] to collect WiFi frames
sni�ed by the TP-link adapter. The collected tra�c is then grouped
based on their MAC address. This grouping helps us to �lter tra�c
belonging to a particular IoT device and manually label them ac-
cording to the activities performed on that device. For example, the
tra�c collected while allowing an IP camera to stream and send
video is annotated as camera-streaming. Similarly, tra�c collected
for IP camera during a brute force attack on Telnet is annotated as
camera-brute forced. This labeling helps to validate the results of at-
tack detection and classi�cation. We use two Atmel RZ Raven USB
Sticks with KillerBee to sni� Zigbee frames and to inject frames.

The wireless tra�c is collected from a) IP cameras, b) WiFi en-
abled smart bulbs, and c) Zigbee enabled smart bulbs. We �rst
collect normal tra�c from di�erent devices, and then collect mali-
cious tra�c while performing di�erent attacks on them. Table 8
in Appendix A shows the total amount of tra�c collected from
di�erent devices in di�erent scenarios.

4.3 Feature Extractor & Selector
This module takes pcap �les containing frames associated with a
particular device as input and extracts a set of features. The process
of extracting features from the tra�c collected does not depend on
device type, or the wireless standard followed.
Extracting Packet Features. The feature extractor extracts a set
of features based on packet header information of each frame. This

set of features are termed packet features. Because of di�erent
frame formats, we get di�erent set of packet features from WiFi
and Zigbee tra�c. Table 1 lists packet features that we extract.

Field Name Value(s)

Dest. MAC WiFi: 48 bits, Zigbee: 16 bits
Src. MAC WiFi: 48 bits, Zigbee: 16 bits
Trans. MAC WiFi: 48 bits/ Null
Recv. MAC WiFi: 48 bits/ Null
Src. PAN Id Zigbee: 16 bits
Dest. PAN Id Zigbee: 16 bits
frame type WiFi : {data/management/control}, Zigbee:

{command/data/beacon}
frame subtype WiFi: {probe req, RTS, QoS data, etc.}
more frag. �ag WiFi: {0/1}
more data �ag WiFi: {0/1}
frame size WiFi: max. 2324B, Zigbee: max. 121B
frame time system time of frame capture

Table 1: Packet features for WiFi and Zigbee frames with
possible values.

Extracting Tra�c Features. Since frames of similar size and type
arrive in bursts, the feature extractor �rst groups them into blocks
of size sblk. Blocks with less than sblk frames are discarded. After
grouping, each block is processed to create one signature for the
corresponding MAC address. Thus, we have k = nf /sblk signatures
from a pcap �le containing nf frames for a given MAC address.

Each block of packets is processed to compute a set of statistical
features using packet features. We call this set of statistical features
as tra�c features. Overall, we categorize the tra�c features into four
types: census (count of di�erent types of frames in a block), ratio
(ratio of numbers of frames in a block), load (mean and standard
deviation of sizes of frames in a block), and gap (mean and standard
deviation of time gaps of frame arrival times in a block).

In case of WiFi, the frame size of di�erent types of frames varies
signi�cantly during an attack. This di�erence in frame size of
di�erent frame types, is not observed in Zigbee. Based on this
observation, WiFi frames in each block are grouped according to
their frame type into three types; data frames (d-frames), control
frames (c-frames), and management frames (m-frames). As the
size of d-frames vary the most during an attack, they are divided
into bins of equal length lbin. Thus, d-frames are placed into cb =
(Lmax−Lmin)/lbin bins, where lbin is bin length, and Lmax and Lmin
are the maximum and minimum length of the WiFi frames.

Table 2 shows the number of tra�c features of each type in each
block for WiFi frames. The feature extractor extracts a total of 45
tra�c features from each block. Table 3 shows the number of tra�c
features in each bin of data frames. Overall, we obtain 18 features
from each bin. For cb = 2 bins in a block, 18 ∗ 2 = 36 features are
extracted. Additionally, 45 tra�c features are extracted in total from
each block. Thus, overall, 45 + 36 = 81 tra�c features are extracted
from WiFi frames. Similarly, a total of 72 features are extracted
from Zigbee frames. These features include all four categories, i.e.
census, load, ratio and gap. Table 4 shows the description and the
type of features extracted from both WiFi and Zigbee frames.

54

Privacy-Preserving Anomaly Detection and A�ack Classification WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Type Control Manag. Data Total

census 6 6 6 18
ratio 3 3 3 9
load 6 6 6 18

total 15 15 15 45
Table 2: Tra�c features extracted from each block.

Type Census Ratio Load Gap Total

#Features 3 3 6 6 18
Table 3: Tra�c features extracted from each bin.

The feature extractor uses scapy and killerbee.scapy_extensions
packages to extract packet features from WiFi and Zigbee frames
respectively. Tra�c features for each signature are then extracted
using a Python script. Both packet and tra�c features are stored
separately for WiFi and Zigbee in a SQLite database table.

Table 4: Features description. Type t of frame in WiFi is
management frame/data frame/control frame and in Zigbee
is data frame/command frame/beacon frame. Direction of
frame is either sent (s), received (r) or any (x).

Type Notation Description

t type of frame
dir direction of a frame; x/s/r
sblk number of frames in a block
lbin bin length
f (t , dir) set of frames (type t) �owing in dir
u (t , dir) set of unique t frame sizes in dir
f (i, t , dir) set of frames (type t) in bin bi in dir
д(i, t , dir) time gaps of frames (type t) in bin bi

in dir

Census κ (t , dir) | f (t , dir) |
κ (i, t , dir) | f (i, t , dir) | in a bin bi
γ (t , dir) |u (t , dir) |

Ratio r (t , dir, sblk) ratio of κ (t , dir) and sblk
r (i, t , dir, sblk) ratio of κ (i, t , dir) and sblk

Load lµ (t , dir) mean of the sizes of frames in
f (t , dir)

lµ (i, t , dir) mean of the sizes of frames in
f (i, t , dir)

lσ (t , dir) std. of the sizes of frames in f (t , dir)
lσ (i, t , dir) std. of the sizes of frames in

f (i, t , dir)

Gap дµ (i, t , dir) mean of time gaps in д(i, t , dir)
дσ (i, t , dir) std. of time gaps in д(i, t , dir)

Feature Selector. Feature Selector selects features important for
anomaly detection or attack classi�cation. We implement this mod-
ule using the Information package in R. The createinfo_tables func-
tion computes the information value for each feature.

4.4 Anomaly Detector and Attack Classi�er

Anomaly Detector. Autoencoders in the anomaly detector are
built in R using the h2o[23] package. We use IQR function to calcu-
late the inter-quartile range to compute thresholds for classi�cation.

The anomaly detector module is heavily reliant on the function-
ality of a device. Since the tra�c patterns of a device can vary
signi�cantly with the change in its functionality, the number of au-
toencoders required to learn bening tra�c patterns (corresponding
to its functionality) varies accordingly.

For instance, the behavior of an IP camera is di�erent when
it is idle2 in comparison to when it is active3. Because of this
di�erence in tra�c patterns, we train two separate autoencoders
(called enci and encl) for the two di�erent states (idle and active)
of IP cameras. If both enci and encl detect an anomaly, an anomaly
is reported. However, in the case of TP-Link bulb and Phillips
Hue bulb, a single autoencoder is su�cient to detect anomalies.
This is because both these devices have limited functionalities (i.e.
they are of similar device type), that do not overlap with a camera’s
functionality. Anomaly detectors for a speci�c device’s tra�c would
be selected based on the device type (e.g., using the MAC address).
We leave investigations of generalization of our anomaly detectors
for generic devices types to future work.
Attack Classi�er. In the Attack Classi�er module, we train a
random forest model with signatures of di�erent attacks. Each
anomaly tra�c signature is labeled manually with the correspond-
ing attack (e.g., slowloris or UDP �ood). The set of features used
for classi�cation is the same set of features used in the anomaly
detector module. We use the randomforest package in R to build a
random forest model and the caret package in R for 10-fold cross-
validation, model tuning, and to evaluate the performance of the
model. This module is activated only when an anomaly is detected
by the anomaly detector module.

5 EXPERIMENTAL SETUP
In this section, we give an overview of our testbed, the tra�c
collection process and the signature extraction process.

5.1 Testbed
All our experiments are conducted inside a shielded room to isolate
devices under observation and avoid any external wireless interfer-
ence. Our testbed consists of six IP cameras, two smart lights and
three Zigbee enabled smart lights. The IP cameras are from �ve
di�erent vendors. The WiFi enabled smart light are from TP-Link
and the Zigbee enabled smart bulbs are from Philips Hue. Each
IoT device is controlled using their respective Android applications
installed on a OnePlus smartphone or a Lenovo Tablet. The Zigbee

2Idle state of the device implies that the device is not accessed through their apps, but
remains switched on.
3The active state implies that the device is actively accessed through their app, e.g.,
stream live video,capture images, sense motion etc.

55

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

enabled smart lights are connected to a base controller which is
connected to Internet via Ethernet.

5.2 Wireless Tra�c Collection
IP cameras. We collect benign tra�c from IP cameras while per-
forming di�erent functions on them. To analyze tra�c patterns
during di�erent attacks, we collect malicious/attack tra�c when
di�erent attacks are launched on targeted IP Cameras. The collected
tra�c is annotated based on timestamps at which a particular func-
tion is performed. We divide the collected tra�c into 5 subsets:

(1) Dcam
a – the tra�c contains only malicious tra�c. The

malicious tra�c comprises of all attacks other than Mirai.
(2) Dcam

i – this subset of tra�c consists of only idle behavior
(tra�c collected when the device is not accessed using its
corresponding app),

(3) Dcam
l – this subset represents tra�c for only active behav-

ior (tra�c collected while performing di�erent functions
on the IP camera using its corresponding app),

(4) Dcam
ail – this subset is a mix of the anomalous, idle and

active behavior of the cameras.
(5) Dcam

Mirai – this subset contains tra�c collected when a Mi-
rai attack is launched on D-Link camera (i.e., infecting
the camera and launching Mirai attack from it on other
devices).

(6) Dcam
m-DDoS – this subset of tra�c is collected from NestCam

and TP-Link IP cameras when 3 Mirai infected D-link cam-
eras form a botnet, and launch DDoS attacks on them.

We use Dcam
i and Dcam

l for training the autoencoders and the
rest for testing trained models.
WiFi enabled smart bulbs. We collect two sets of tra�c from
WiFi enabled smart bulbs.

(1) Dbulb
l – contains tra�c collected when the device performs

normal activities such as changing color or changing light-
ing themes.

(2) Dbulb
ld – contains mixed tra�c collected when the bulbs

perform normal activities and when DDoS attacks are
launched on the bulbs.

Dbulb
l is used to train autoencoders and the other tra�c set is used

to test the performance of the trained model.
Zigbee enabled smart bulbs. The tra�c collection process in
Zigbee enabled smart bulbs is similar to that in TP-Link bulbs. We
collect two sets of tra�c from this set of bulbs:

(1) Dzb
l – contains non-anomalous tra�c used for training

autoencoders, and
(2) Dzb

al – consists of a mixture of malicious (i.e., only Zigbee
�ooding attack) and normal tra�c.

5.3 Signature Formation
We experiment with di�erent sblk for WiFi and Zigbee frames to
improve the performance of the anomaly detection module (see
Section 4.3). For WiFi frames, we select block size sblk from {100,
200, 300, 400, 500}, and for Zigbee, we choose sblk from {40, 60, 80,
100} to form signatures. Every signature is labeled according to the
corresponding activities performed at the time of tra�c collection.

6 RESULTS
In this section, we discuss the performance metric used to test our
framework and present the results of our analysis.

6.1 Performance Metric
Our primary objective is to detect anomalies with a high accuracy
and minimal false alarms. Once an anomaly is detected, we aim to
identify the attack with a high accuracy.

We use three known metrics to evaluate the performance of
trained models for anomaly detection.

• Accuracy (Acc) - ratio between the number of correct de-
tection and the total number of test samples, i.e.,

Acc =
NT P + NT N

N
∗ 100 (7)

where NT P is the number of true positives, NT N is the
number of true negatives and N is the total number of
observations.

• Sensitivity (Sens) - ratio between the number of correctly
detected normal samples and the total number of normal
samples, i.e.,

Sens =
NT P

NT P + NFN
. (8)

NFN is the number of false negatives. Higher sensitivity
indicates lower number of false alarms.

• Speci�city (Spec) - ratio between the number of correctly
detected anomaly samples and the number of anomaly sam-
ples, i.e.,

Spec =
NT N

NT N + NF P
. (9)

NF P is the number of false positives.

6.2 Anomaly Detection: IP Camera
We develop autoencoders enci and encl in the anomaly detector
module, to detect anomalies in IP cameras. The two autoencoders
are trained using normal tra�c in Dcam

i and Dcam
l datasets. enci

detects anomalies in the idle state of the camera, and encl detects
anomalies in the active state of the camera. We detect an attack
when both autoencoders raise an alarm.

Changing the block size and bin length e�ects the distribution of
each feature (see Section 4.3). Hence, choosing optimal block size
and bin length plays a vital role in improving the performance of our
framework. To �nd the optimal combination, we train autoencoders
to achieve high accuracy with di�erent combinations of bin length
lbin and block size sblk by varying its con�guration (i.e., number
of hidden layers and number of nodes in those layers). Table 9 in
Appendix B.1 shows the con�gurations of autoencoders used when
lbin = 800 and sblk is varying.
ROC Curve Analysis. Choosing an optimal threshold of recon-
struction errors is essential for anomaly detection. To select an
optimal threshold for the anomaly detector module, a set of thresh-
old values (Eth) are calculated by varying P and x in Eq. 5 during
training. We observe that x = 1 gives the least misclassi�cation
rate in the case of IP cameras. Thus, we �x x = 1 in this case. P
takes percentile values from {0, 5, 10, ..., 100}. Plotting the ROC
plots for di�erent lbin and sblk by varying the threshold helps to

56

Privacy-Preserving Anomaly Detection and A�ack Classification WiSec ’18, June 18–20, 2018, Stockholm, Sweden

0.7

0.8

0.9

0.25 0.50 0.75
specificity

se
ns

iti
vi

ty

bin_block
800_200
800_300
800_400
800_500

Figure 3: ROC Plots using di�erent thresholds for di�erent
lbin and sblk. Though, lbin = 800 and sblk = 500 covers slightly
more area, lbin = 800 and sblk = 300 shows higher sensitivity.

identify the optimal threshold, lbin and sblk for anomaly detection.
Figure 3 shows the ROC plot built using Eth for a �xed lbin = 800
and varying sblk using the dataset Dcam

ail . We observe that the upper
threshold of P = 95th percentile of reconstruction errors in Eq. 5
gives best results. Thus we �x P = 95th percentile for anomaly
detection in IP cameras. Further, the Area under the Curve (AUC)
is similar for sblk = 300, 400 and 500. However, the sensitivity is the
highest when sblk = 300. This means that there are lesser number
of false alarms with sblk = 300. Additionally, extracting features
from a block with sblk = 300 takes lesser time as compared to a
block with sblk = 400 or 500.

Optimal Block Size and Bin Length. Figure 4a shows the varia-
tion of accuracy (Acc) with di�erent combinations of lbin and sblk in
Dcam
a dataset. This dataset only contains attack signatures. Hence,

there are no true positives in this dataset which makes sensitiv-
ity = 0. The highest accuracy (96.9%) is obtained with lbin = 800
and sblk = 400. lbin = 800 signi�es that we extract features from
two bins of data frames. Reducing sblk from 400 to 300 marginally
reduces the accuracy to 96.2%. Figures 4b , 4d and 4c show the
accuracy, speci�city and sensitivity observed for di�erent com-
binations of lbin and sblk in Dcam

ail dataset. Even for this dataset,
choosing lbin = 800 and sblk = 400 gives the highest accuracy
(95.2%) and speci�city(0.96). However, the highest sensitivity (0.89)
is observed when lbin = 800 and sblk = 300. The accuracy and
speci�city only reduces marginally to 93.2% and 0.94 respectively
with sblk = 300. This analysis matches the ROC curve analysis and
con�rms lbin = 800 and sblk = 300 (for IP cameras).

Feature Importance. Table 10 in Appendix B.2 lists the impor-
tance values of di�erent features used in enci and encl for lbin = 800
and sblk = 300. We see that the features of type Gap (i.e., time gaps
between sent or received, or only sent, or only received data frames)
have higher signi�cance in general as compared to other types of
features. Our experiments highlight that дµ (1, data, s) , i.e., mean
time gap between sent data frames in bin b1, and дµ (1, data, r), i.e.,
mean time gap between received data frames in bin b1, are the most
signi�cant features in encl and enci respectively. Similar features in
binb0 are also important. On tracing back to pcap �les, we observed
that a large number of both small (less than 300B) and large (more
than 1400B) sized data frames (subtype as “reserved”) are sent quite
frequently when the camera (e.g. D-Link camera) is streaming. This

analysis con�rms that the behavior of non-anomalous tra�c of IP
cameras is well captured by the features we extract in this work.

6.3 Detecting Botnet Attacks
We use our pre-trained autoencoders encl and enci to detect the
communication between the C&C server and a Mirai bot. We also
detect attacks launched by a Mirai botnet on IP cameras.

Detecting Mirai C&C Activity. Our system analyzes tra�c pat-
terns between C&C and camera. The anomaly detector module
detects the communication of the the C&C and the camera with 98%
accuracy. When the camera communicates with the C&C server,
the number of frames exchanged is relatively higher. Thus, we can
detect this communication with high accuracy.

Detecting Mirai Bot launching attacks. We use Dcam
Mirai dataset

to test for Mirai bots launching attacks. WADAC detects an active
IP camera infected with Mirai, launching attacks on other devices,
with 96.12% accuracy, 0.85 sensitivity and 0.98 speci�city. This
shows that the tra�c patterns of an active camera infected with
Mirai, launching attacks, is signi�cantly di�erent from its normal
tra�c behaviour. While launching the attack, the data frame size
in upstream is relatively small (typically ≤ 200B).

Detecting Mirai DDoS. We use Dcam
m-DDoS dataset to detect DDoS

attacks launched by Mirai botnets on NestCam and TP-Link IP
cameras. This dataset contains signatures built from a mixture
of DDoS and non-anomalous tra�c from 2 di�erent IP cameras.
In this case, the anomaly detector module detects anomalies (i.e.,
DDoS attack by Mirai bots) with an accuracy of 98.3%, speci�city
= 1.0 and sensitivity = 0.90. The anomaly detector tra�c observed
at the targeted IP cameras is downstream and numerous (unlike
that in Mirai bot). The anomaly detector recognizes that this tra�c
contains a large number of management frames. This is because the
camera fails to respond to AP’s beacons when it is busy handling
attack data frames. Thus, the camera sends probe requests explicitly
asking for the AP’s parameter.

6.4 Attack Classi�cation: WiFi Devices
The attack classi�cation module, described in Section 3.4, is re-
quired only when an anomaly has been detected by the anomaly
detector module. This module identi�es attacks based on a known
set of attacks. Correctly identifying the type of attack may help in
developing appropriate mitigation strategies.

We use Dcam
a , Dcam

m−DDoS and Dcam
Mirai datasets to train and test

a random forest classi�er. The dataset is randomly segregated
into training (65%) and validation (35%) set. Since sblk = 300 and
lbin = 800 is used to build signatures for anomaly detection, the
same con�guration is used for attack classi�cation. The resulting
classi�er identi�es attacks on IP cameras with an overall accuracy
of 97.4%. The confusion matrix shown in Table 5 indicates that a
few slowloris attack signatures are misclassi�ed as vulnerability
check (10 signatures), and a few vulnerability check are categorized
as slowloris (27 signatures). On analyzing the frame formats in
detail, we found that both vulnerability check and slowloris have
similar sized data frames. This is because vulnerability checks send
small sized packets to di�erent ports, and slowloris attack also
sends small sized packet to form HTTP connections.

57

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

bin: 400 bin: 800 bin: 1600

200 300 400 200 300 400 200 300 400
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Ac
cu

ra
cy

(a)

bin: 400 bin: 800 bin: 1600

200 300 400 200 300 400 200 300 400
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Ac
cu

ra
cy

(b)
bin: 400 bin: 800 bin: 1600

200 300 400 200 300 400 200 300 400
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Se
ns

iti
vi

ty

(c)

bin: 400 bin: 800 bin: 1600

200 300 400 200 300 400 200 300 400
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Sp
ec

ifi
ci

ty

(d)

Figure 4: (a) Change in accuracywith change in lbin and sblk in the anomaly dataset (Da). (b,c,d) variance in accuracy, sensitivity
and speci�city with change in lbin and sblk in the mixed dataset (Dail)

I � T t-
ne

t

f-w
ar

e

s-
lo

ris

u-
�o

od

v-
ch

ec
k

dd
os

M
ira

i

t-net 14 0 0 0 0 0 0
f-ware 0 167 0 0 2 0 0
s-loris 1 0 506 0 27 0 0

u-�ood 0 0 2 525 0 0 0
v-check 1 0 10 0 196 0 0

ddoS 0 0 0 0 0 36 0
Mirai 0 0 0 0 0 0 528

Table 5: Confusion matrix for identifying attack using ran-
dom forest supervised learning model, T and I refer to true
and identi�ed attacks, respectively. t-net, f-ware, s-loris, u-
�ood, v-check indicate Telnet brute-force, �rmware update,
slowloris, UDP �ood, and vulnerability check attacks.

The top four important features for attack classi�cation along
with their importance values are listed in Table 11 in Appendix B.3.
Features belonging to the load category are more signi�cant.

6.5 Detecting DDoS in TP-Link Bulb
Since the number of WiFi frames generated by a TP-Link bulb is
lower than that in IP Cameras, we build signatures with block sizes
sblk of 100, 200, and 300 to detect attacks. As discussed in Section 4.4,
one autoencoder is trained for every combination of lbin and sblk.
Figure 5 shows the accuracy, sensitivity and speci�city observed for
di�erent combinations of lbin and sblk. Results are obtained using
Dbulb

ld test set. A maximum accuracy of 98.8%, sensitivity of 0.78
and speci�city = 1.0 is observed when lbin = 1600 and sblk = 100.
This means that despite a few false alarms, we successfully detect
most DDoS attacks. On analyzing the ROC plot, we observed that
lbin = 1600 and sblk = 100 gives the maximum AUC of about 0.99.

The error threshold Eth calculated with P = 75th percentile and
x = 0 gives optimal sensitivity and speci�city. Hence we choose
lbin = 1600 and sblk = 100 and the corresponding autoencoder to
detect attacks in TP-Link bulbs.

Table 10 in Appendix B.2 shows that lµ (i = 0, t = d-frame, dir =
s), i.e, mean size of sent data frames in bin b0, which is of type Load
is the most important feature having about 3.6% importance. We do
not develop the attack classi�er for TP-Link bulb or Phillips Hue
Bulb in our current work (this is one of our potential future work
where we would incorporate additional attacks to the bulbs).

6.6 Execution Time Analysis
Once the attack detector and attack classi�er modules are trained,
the execution time of our framework is dominated by total time
taken for tra�c collection and feature extraction.
Tra�c collection. The execution time of the tra�c collector mod-
ule depends on the type of IoT device being monitored. It takes
about 49.6s, 2.7s and 14.22s to collect tra�c for Dail with sbk = 300
from D-link IP camera, TP-link IP camera and TP-link bulb re-
spectively. D-link camera has a greater tra�c collection time as
compared to others. The state of the device under observation also
plays a vital role. For instance, it takes about 10-12 minutes more
to sni� tra�c as opposed to its active state, as D-link camera does
not communicate with its server in the idle state. Hence, the tra�c
collection module can be a potential bottleneck.
Feature Extraction. The time required to extract features primar-
ily depends on lbin as the number of features to extract can vary
substantially depending on lbin. The time taken for feature extrac-
tion is negligible (max of 17.5 ms) as compared to tra�c collection.
Figure 7 in Appendix B.4 shows the boxplot of execution time on a
Linux based laptop with i7 Core processor for varying bin lengths.
Since we collect a block of frames to extract features, the runtime
of the framework cannot be real-time. It is primarily dependent on
the tra�c collection time.

58

Privacy-Preserving Anomaly Detection and A�ack Classification WiSec ’18, June 18–20, 2018, Stockholm, Sweden

bin: 100 bin: 200 bin: 400 bin: 800 bin: 1600

100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Ac
cu

ra
cy

(a)

bin: 100 bin: 200 bin: 400 bin: 800 bin: 1600

100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

block size

Se
ns

iti
vi

ty

(b)

bin: 100 bin: 200 bin: 400 bin: 800 bin: 1600

100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
0.70

0.75

0.80

0.85

0.90

0.95

1.00

block size

Sp
ec

ifi
ci

ty

(c)

Figure 5: Variance in accuracy (a), sensitivity (b) and speci�city (c) with change in lbin and sblk in TP-Linkmixed dataset (Dbulb
ld).

6.7 Anomaly Detection: Zigbee Devices
We apply our proposed framework to detect attacks on Phillips
Hue bulbs that use Zigbee protocol. As mentioned in Section 5.3,
signatures from Zigbee frames are built with small (<100) block
sizes. Further, the data frames are not binned to extract tra�c
features. As in the case of TP-Link bulbs, the anomaly detector
module uses a single autoencoder to detect attacks on Phillips Hue
bulbs. The autoencoder is trained and tested with Dzb

l and Dzb
al .

Figure 6 shows the variation of the detection accuracy, sensitivity
and speci�city with di�erent block sizes. A maximum accuracy
of 99% ,sensitivity = 0.94 and speci�city = 1.0 is obtained when
signatures are built with sblk = 40. Increasing the block size reduces
the accuracy and the sensitivity marginally. However, the speci�city
remains same irrespective of the change in block size. ROC curve
analysis shows a maximum AUC of about 0.99 when sblk = 40. The
reconstruction error threshold with P = 95th percentile and x = 1.5
in Eq. 5 gives optimal sensitivity and speci�city.

Table 10 in Appendix B.2 lists signi�cant features for anomaly
detection in Zigbee devices. The table highlights that the mean size
of received command frames (belongs to Load type) is the most
signi�cant feature for detecting anomalies.

7 RELATEDWORK
We broadly categorize related work into three categories, based
on the layer at which tra�c is collected: i) L1 considers features
of PHY-layer tra�c such as signal strength and noise ii) L2 (link-
layer) which uses features such as MAC address, frame type, length
and payload iii) L3+ (network-layer and higher) which considers
network and transport layer features such as IP address, packet
length, round trip delay, etc. We mostly focus on IDS-related work,
summarized in Table 6. Our framework belongs to the L2 category.

Existing works in L1 category analyze channel state informa-
tion (CSI), frame header, transmission times and similar. For exam-
ple, A. Sheth et al. [34] correlated the e�ect of a hidden terminal
on round-trip time at the network-layer. Based on this correlation,
they proposed a diagnostic tool to mitigate network performance
that is caused by di�erent attacks on PHY layer. I. Bagci et al. [8]
used CSI to detect physical tampering on transmitting antenna or
relocation of the transmitting device with more than 53% accuracy.

L2 schemes detect attacks (such as fake AP or evil twin attack)
at link layer. These attacks normally a�ect the network infras-
tructure. Yu Liu et al. [26] investigate the use of link layer tra�c
in ad-hoc networks to detect routing attacks. Using NS-2 simula-
tions, the authors evaluate and select a set of features from link

layer to pro�le normal behaviors of mobile nodes, and then apply
cross-feature analysis on feature vectors constructed from training
data according to the proposed feature set. As routing schemes
and ad-hoc networks are considered, most features are related to
such protocols, and are not used in our setting. R. Carmo et al. [18]
proposed an IDS that leverages active probing to detect malicious
behavior of the nodes in wireless infrastructure. The devices are
assumed to show their malicious behavior by transmitting unex-
pected frames without creating PHY layer attacks such as jamming
attacks. In [2], the authors proposed techniques to detect deauth
and evil twin attacks at MAC layer by utilizing control and manage-
ment frames. The features such as time gap between management
or control frames, RSSI from PHY headers are used to detect such
attacks. Wireless Snort [38] is an open source tool that devises rules
(such as the rule based snort [13]) to detect attacks, such as fake AP,
by passively monitoring wireless tra�c. It considers MAC header
�elds of management, control and data frames as a basic building
block to generate rules to detect attacks. Since management and
control frames are not encrypted, the tool can consider these frames
to detect attacks.

L3+ and wireline schemes analyze network or transport layer
tra�c [16, 21, 22]. For example, the authors of [21, 22] discuss
detection of bots in a botnet based on network and transport layer
tra�c features (extracted with Snort IDS), application layer data
is ignored. The (unencrypted) L3/L4 tra�c is obtained leveraging
access to intermediate routers.

The scheme proposed in [10] detects malicious electric smart
meters using a passive tra�c tap in the infrastructure. The scheme
learns the periodicity of communication between the smart meters
and its smart grid server to detect malicious meters. In [28], the
authors detect attacks (such as �ooding, packet drop, etc.) at the
network-layer in a MANET [29] simulation environment using
di�erent supervised models. In [4], the authors present a scheme to
detect malware tra�c (which is using TLS). They extract �ow based
features (such as number of sent and received bytes and packets)
from TLS tra�c, and use supervised classi�ers to detect attacks.

L3+/wireline using ML. In [3], the authors use neural network to
recognize and identify di�erent port scan and host sweep attacks,
leveraging features from network layer and above. The scheme
works in real-time: it �rst captures packets, extracts features using
a time-delayed neural network, then recognizes host sweep or port
scan attacks using a set of 2 pattern recognition neural networks,
and �nally classi�es the attacks using a set of neural networks. This
approach helped them recognize attacks such as TCP ACK port

59

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

0.70

0.75

0.80

0.85

0.90

0.95

1.00

40 60 80 100
block size

Ac
cu

ra
cy

(a)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

40 60 80 100
block size

Se
ns

iti
vi

ty

(b)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

40 60 80 100
block size

Sp
ec

ifi
ci

ty

(c)

Figure 6: (a) Anomaly detection accuracy, (b) sensitivity and (c) speci�city on Philips Hue Smart Bulb (Zigbee) with di�erent
block sizes for for Dzb

al dataset.

Related Work Passive? Tra�c Tra�c Encrypted? Target Attack/Anomaly

[34] No L1 N/A Hidden terminal, capture e�ect, noise, signal strength
[18] No L2 WEP/WPA Compromised or malicious nodes with byzantine behavior on MAC layer

[3, 24, 31] No L3+ # No Malicious TCP connections, host sweep, port scan, DoS, probing, unsafe
local or remote access,DDoS

[8] Yes L1 N/A Physical tampering or relocating antenna
[2, 38] Yes L2 WEP/WPA Deauth and evil twin attack at MAC layer, Fake access points

[10, 28] Yes L3+ # TLS Malicious devices, �ooding, packet dropping, black hole
[4] Yes L3+ # TLS Malware tra�c

[26] Yes L2, L3+ No Routing attacks (black hole, packet drop, etc.) in Ad-hoc networks
[21, 22] Yes L3+ # N/A Botnet attacks (characterized by, e.g., C&C tra�c and then attack others)

on internal hosts using �ow based features along with Snort [13] log
This work Yes L2 WEP/WPA/WPA2 Vulnerability check, �rmware update, DoS (TCP/UDP), DDoS, brute force

Table 6: Related work on anomaly or intrusion detection based on network tra�c analysis. = wireless, #=wireline tra�c.

scan attacks, which could not be detected using snort. The authors
applied their framework to DARPA 2000[25] dataset and detected
all host sweep and port scan attacks with 100% recognition rate.

In [24], the authors analyze detection of DDoS attacks in the KDD
cup dataset, DARPA 99 and 2000 datasets, and Con�cker dataset [37]
using di�erent machine learning techniques. They found that RPB
boost algorithm performed better than other techniques. RPB boost
gave a detection accuracy of 96.4% (in KDD dataset), 99.4% (in
DARPA 99 and 2000 datasets) and 97.2% (in con�ker dataset). The
FPR was 3.1, 3.7 and 3.6 in KDD, DARPA and Con�cker datasets.

G. Osada et al. [31] compare random forest classi�ers to semi-
supervised variational autoencoders to detect attack tra�c, leverag-
ing features from network layer and above. The datasets used are
Kyoto2006 [35] and NSL-KDD [36]. Due to the age of the datasets,
most tra�c is unencrypted. The authors report FPR of 0.0343, Re-
call of 0.953 and an AUC of 0.984 (Kyoto2006 dataset), and FPR of
0.121, Recall of 0.859 and AUC of 0.957 (NSL-KDD dataset).

While the settings of the discussed works di�er from our setting
in this work, we note that our overall AUC, False Positive Rate
and Recall are comparable, even though we are restricted to link-
layer tra�c. We have shown that for IP cameras, we detect DoS,
vulnerability scan, brute-force attacks UDP-�ood with an AUC of
0.932, FPR of 0.06 and Recall of 0.89. We even detected DDoS on IP
cameras with an AUC of 0.983, FPR of 0 and Recall of 0.9. In the
case of TP-Link bulbs, we detected DDoS with an AUC of 0.988,
FPR of 0 and Recall of 0.78.

Summarizing, we show that it is possible to detect such attacks
without control over the network, and without requiring to have
access to private application layer information of other users.

8 CONCLUSION
In this paper, we proposed a framework to detect anomalies in
wireless tra�c of IoT devices, and then classi�ed the attack from
a known set of attacks. We analyzed link-layer information only,
and we thus argue that our system mitigates the impacts on pri-
vacy of supervised users. We proposed a unsupervised machine
learning based approach (autoencoders) for anomaly detection, and
a supervised based approach (random forest classi�ers) for attack
classi�cation. Our experiments show that our framework detects
attacks on IP Cameras with 96.2% accuracy and classi�ed 97% of
the attacks correctly. To test our system against botnet attacks, we
injected Mirai on D-Link cameras. We detected attacks launched
by the Mirai bot with 96.1% accuracy. In addition, we detect DDoS
attacks (carried out by Mirai bots or targeting IoT devices) with
98% accuracy. We show that our framework can also detect �ood-
ing attack on Zigbee based smart bulbs with an accuracy of about
99%, which demonstrates that our method can be applied to detect
various application layer attacks on di�erent wireless technologies
(and device types). A survey of related work on attack detection
shows that our performance is comparable to other schemes that
leverage network layer and above information from wireline com-
munications.

60

Privacy-Preserving Anomaly Detection and A�ack Classification WiSec ’18, June 18–20, 2018, Stockholm, Sweden

REFERENCES
[1] 2016. Internet of Things and the Rise of 300 Gbps DDoS Attacks.

https://www.akamai.com/us/en/multimedia/documents/ social/q4-state-of-the-
internet-security-spotlight-iot-rise-of-300-gbp-ddos-attacks.pdf. Akamai Fast
Forward.

[2] Z. Afzal, J. Rossebo, B. Talha, and M. Chowdhury. 2016. A Wireless Intrusion
Detection System for 802.11 networks. In Proceedings of International Conference
on Wireless Communications, Signal Processing and Networking (WiSPNET). 828–
834.

[3] O. Al-Jarrah and A. Arafat. 2014. Network Intrusion Detection System using
Attack Behavior Classi�cation. In Proceedings of International Conference on
Information and Communication Systems (ICICS). 1–6.

[4] Blake Anderson, Subharthi Paul, and David A. McGrew. 2016. Deciphering
Malware’s use of TLS (without Decryption). CoRR abs/1607.01639 (2016).

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the Mirai botnet. In Proceedings of USENIX
Security Symposium.

[6] Daniele Antonioli, Sandra Siby, and Nils Ole Tippenhauer. 2017. Practical Evalu-
ation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN. In Proceedings of
Conference on Cryptology And Network Security (CANS).

[7] Avalium Systems. 2017. DDOS App. https://play.google.com/store/apps/details?id=
com.ddos.avaliumsystems.ddos.

[8] Ibrahim Ethem Bagci, Utz Roedig, Ivan, Matthias Schulz, and Matthias Hollick.
2015. Using Channel State Information for Tamper Detection in the Internet of
Things. In Proceedings of Annual Computer Security Applications Conference (AC-
SAC). ACM, New York, NY, USA, 131–140. http://doi.acm.org/10.1145/2818000.
2818028

[9] Pierre Baldi. 2012. Autoencoders, Unsupervised Learning, and Deep Architec-
tures. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning
(Proceedings of Machine Learning Research), Vol. 27. PMLR, 37–49.

[10] Robin Berthier, David Urbina, Alvaro Cárdenas, M Guerrero, U Herberg, J G
Jetcheva, Daisuke Mashima, Jih-Chun Huh, and Rakesh Bobba. 2014. On the
practicality of detecting anomalies with encrypted tra�c in AMI. In Proceedings
of Conference on Smart Grid Communications (SmartGridComm). 890–895.

[11] Biondi, Philippe. [n. d.]. Scapy. http://www.secdev.org/projects/scapy.
[12] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct 2001), 5–32. https:

//doi.org/10.1023/A:1010933404324
[13] Brian Caswell, James C. Foster, Ryan Russell, Jay Beale, and Je�rey Posluns. 2003.

Snort 2.0 Intrusion Detection. Syngress Publishing.
[14] Daniel B. Cid. 2016. IoT Home Router Botnet Leveraged in Large DDoS At-

tack. https://blog.sucuri.net/2016/09/iot-home-router-botnet-leveraged-in-large-
ddos-attack.html.

[15] Daniel B. Cid. 2016. Large CCTV Botnet Leveraged in DDoS Attacks.
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html.

[16] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. 2016. Analyzing An-
droid Encrypted Network Tra�c to Identify User Actions. IEEE Transac-
tions on Information Forensics and Security 11, 1 (Jan 2016), 114–125. https:
//doi.org/10.1109/TIFS.2015.2478741

[17] Alison DeNisco. 2017. Report: 2016 saw 8.5 million mobile malware attacks, ran-
somware and IoT threats on the rise. http://www.techrepublic.com/article/report-
2016-saw-8-5-million-mobile-malware-attacks-ransomware-and-iot-threats-
on-the-rise/.

[18] Rodrigo do Carmo and Matthias Hollick. 2013. DogoIDS: A Mobile and Active
Intrusion Detection System for IEEE 802.11s Wireless Mesh Networks. In Pro-
ceedings of ACMWorkshop on Hot Topics on Wireless Network Security and Privacy
(HotWiSec). 13–18.

[19] Media Fire. 2013. AnDOSid. http://www.media�re.com/�le/
1xcdnycdxuaqdiq/AnDOSid-com.scott.herbert. AnDOSid-3-v1.1.apk.

[20] MS GROUP. 2016. Packet Generator. https://play.google.com/store/apps/details?id=
packetGenrator.edu.ae.

[21] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. BotMiner:
Clustering Analysis of Network Tra�c for Protocol- and Structure-independent
Botnet Detection. In Proceedings of USENIX Security Symposium. USENIX Associ-
ation, Berkeley, CA, USA, 139–154.

[22] Guofei Gu, Phillip Porras, Vinod Yegneswaran, and Martin Fong. 2007. BotH-
unter: Detecting Malware Infection Through IDS-Driven Dialog Correlation. In
Proceedings of USENIX Security Symposium. USENIX Association, Boston, MA.

[23] H2O.ai. 2016. R Interface for H2O package. https://github.com/h2oai/h2o-3.
[24] P. Arun Raj Kumar and S. Selvakumar. 2011. Distributed denial of service attack

detection using an ensemble of neural classi�er. Computer Communications 34,
11 (2011), 1328 – 1341. https://doi.org/10.1016/j.comcom.2011.01.012

[25] MIT Lincoln Laboratory. 2000. DARPA datasets. https://www.ll.mit.edu/ideval/
data/

[26] Yu Liu, Yang Li, and Hong Man. 2005. MAC layer anomaly detection in ad hoc
networks. In Proceedings from the Sixth Annual IEEE SMC Information Assurance
Workshop. 402–409. https://doi.org/10.1109/IAW.2005.1495980

[27] Rajib Ranjan Maiti, Sandra Siby, Ragav Sridharan, and Nils Ole Tippenhauer. 2017.
Link-Layer Device Type Classi�cation on Encrypted Wireless Tra�c with COTS
Radios. In Proceedings of European Conference on Computer Security (ESORICS).
247–264.

[28] Aikaterini Mitrokotsa and Christos Dimitrakakis. 2012. Intrusion Detection in
MANET using classi�cation Algorithms: The E�ects of Cost and Model Selection.
Ad-Hoc Networks (2012).

[29] A Nadeem and M P Howarth. 2013. A Survey of MANET Intrusion Detection
amp; Prevention Approaches for Network Layer Attacks. IEEE Communications
Surveys Tutorials 15, 4 (2013), 2027–2045.

[30] Nmap.org. 2017. Nmap - the Network Mapper. https://github.com/nmap/nmap.
[31] Genki Osada, Kazumasa Omote, and Takashi Nishide. 2017. Network Intrusion

Detection Based on Semi-supervised Variational Auto-Encoder. In Proceedings of
European Symposium on Research in Computer Security (ESORICS). 344–361.

[32] Jack Palevich. 2015. Terminal Emulator for Android.
https://play.google.com/store/apps/details?id=
jackpal.androidterm&feature=search_result.

[33] Justin Shattuck Sara Boddy. 2017. The hunt for IoT: The rise of
THINGBOTS. https://f5.com/labs/articles/threat-intelligence/ddos/
the-hunt-for-iot-the-rise-of-thingbots

[34] Anmol Sheth, Christian Doerr, Dirk Grunwald, Richard Han, and Douglas Sicker.
2006. MOJO: A distributed physical layer anomaly detection system for 802.11
WLANs. In Proceedings of the international conference on Mobile systems, applica-
tions and services (MobiSys). ACM, 191–204.

[35] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke Inoue, and
Koji Nakao. 2011. Statistical Analysis of Honeypot Data and Building of Kyoto
2006+ Dataset for NIDS Evaluation. In Proceedings of the Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS). ACM,
New York, NY, USA, 29–36. https://doi.org/10.1145/1978672.1978676

[36] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. 2009. A detailed analysis of
the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications. 1–6. https://doi.org/10.1109/CISDA.2009.
5356528

[37] UCSD. 2000. Con�cker dataset. https://www.caida.org/data/passive/
telescope-3days-con�cker_dataset.xml

[38] Craig Valli. 2004. Wireless Snort: A WIDS in progress. In Proceedings of Aus-
tralian Computer, Network and Information Forensics Conference. Edith Cowan
University.

[39] Joshua Wright, Ryan Speers, and Ricky Melgares. 2011. ZigBee Security Research
Toolkit. https://github.com/riverloopsec/killerbee.

[40] Gokberk Yaltirakli. 2016. Low bandwidth DoS tool: Slowloris 0.1.4 rewrite in
Python. https://github.com/gkbrk/slowloris.

A APPENDIX: SYSTEM IMPLEMENTATION
Table 7 lists the attacks performed on di�erent IoT devices. Table 8
shows the total amount of tra�c collected from di�erent devices.

Device vul. brute- UDP- slow- �rm- DDoS �ood- Mirai
scan force �ood loris ware ing

Dlink Cam. # #
TP Link Cam. # # # #

Nest Cam. # # # # #
Natat. Cam. # # # # #
With. Cam. # # # # # #

TP Link Bulb # # # # # # #
Phillip Bulb # # # # # # #

Table 7: Type of attacks performed on various IoT devices.
 = attack was performed, #=attack was not performed.

Device frame_count(K) size(MB) time(hrs)

IP Camera 2060 508.40 7.63
WiFi Bulb 459 58 2.31

Zigbee Bulb 18.5 0.96 0.50
Table 8: Total amount of tra�c collected.

61

http://doi.acm.org/10.1145/2818000.2818028
http://doi.acm.org/10.1145/2818000.2818028
http://www. secdev. org/projects/scapy
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TIFS.2015.2478741
https://doi.org/10.1109/TIFS.2015.2478741
https://doi.org/10.1016/j.comcom.2011.01.012
https://www.ll.mit.edu/ideval/data/
https://www.ll.mit.edu/ideval/data/
https://doi.org/10.1109/IAW.2005.1495980
https://f5.com/labs/articles/threat-intelligence/ddos/the-hunt-for-iot-the-rise-of-thingbots
https://f5.com/labs/articles/threat-intelligence/ddos/the-hunt-for-iot-the-rise-of-thingbots
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528
https://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml
https://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Ragav Sridharan, Rajib Ranjan Maiti, and Nils Ole Tippenhauer

B APPENDIX: RESULTS
B.1 Anomaly Detection: IP Camera
Table 9 shows the con�guration of autoencoders corresponding to
lbin = 800 while varying sblk

↓ sblk�type → Idle Active

100 (58,29,58) (58,29,58)
200 (63,28,63) (63,29,63)
300 (59,29,59) (59,29,59)
400 (59,29,59) (59,29,59)
500 (59,28,59) (59,29,59)

Table 9: Con�gurations of idle and active autoencoders cor-
responding to bin length (lbin = 800) and varying block sizes
(sblk).

B.2 Anomaly Detection: Feature Importance
Table 10 lists features signi�cant for anomaly detection in di�erent
device types, and their importance values.

AE Feature Type Importance

IP Camera Active дµ (1, data, s) Gap 0.02572
дσ (1,data, s) Gap 0.02345
дµ (0,data, r) Gap 0.02312
дσ (1,data, r) Gap 0.02249

IP Camera Idle дµ (1, data, r) Gap 0.02478
дµ (0,data, r) Gap 0.02218
lµ (0,data, s) Load 0.02209
дσ (1,data, r) gap 0.02189

TP-Link bulb lµ (ctrl , r) Load 0.03667
κ (data, s) Census 0.03524
lσ (data, s) Load 0.03512
κ (ctrl ,x) Census 0.03496

Phillips Hue bulb lµ (data, r) Load 0.05054
lµ (data,x) Load 0.04790
lµ (any,x) Load 0.04711
κ (cmd, r) Census 0.04520

Table 10: Feature importance for anomaly detection. Col-
umn AE indicates autoencoders for IP Camera (idle and ac-
tive with lbin = 800 and sblk = 300), TP-Link bulbs (lbin = 1600
and sblk = 100) and Phillips Hue bulbs(sblk = 40).

B.3 Attack Classi�cation: Feature Importance
Table 11 lists important features for attack classi�cation along with
their importance values.

B.4 Execution Time Analysis
Figure 7 gives information about the time taken by the feature
extractor to build one signature from 500 frames.

Feature lµ (0,data,x) lµ (0,data, r) κ (ctrl , s) r (ctrl , s, sblk)

Type Load Load Census Ratio
Imp. 17.78 10.63 6.224 5.732
Table 11: Feature importance for attack classi�cation.

15.0

17.5

20.0

10 50 100 200 300 400 500 800 1600
Bin Length [packets]

M
ea

n
ru

nt
im

e
[m

s]

Figure 7: Average and standard deviation of runtime taken
for feature extractor to extract a single signature from 500
frames.

62

	Abstract
	1 Introduction
	2 Background
	2.1 Feature Extraction and Feature Selection
	2.2 Autoencoders

	3 Privacy-Preserving Attack Detection and Classification
	3.1 System Model and Attacker Model
	3.2 Problem Statement
	3.3 WADAC: Wireless Anomaly Detection and Attack Classification
	3.4 Anomaly Detector and Attack Classifier

	4 System Implementation
	4.1 Attack Generator
	4.2 Traffic Collector
	4.3 Feature Extractor & Selector
	4.4 Anomaly Detector and Attack Classifier

	5 Experimental Setup
	5.1 Testbed
	5.2 Wireless Traffic Collection
	5.3 Signature Formation

	6 Results
	6.1 Performance Metric
	6.2 Anomaly Detection: IP Camera
	6.3 Detecting Botnet Attacks
	6.4 Attack Classification: WiFi Devices
	6.5 Detecting DDoS in TP-Link Bulb
	6.6 Execution Time Analysis
	6.7 Anomaly Detection: Zigbee Devices

	7 Related Work
	8 Conclusion
	References
	A Appendix: System Implementation
	B Appendix: Results
	B.1 Anomaly Detection: IP Camera
	B.2 Anomaly Detection: Feature Importance
	B.3 Attack Classification: Feature Importance
	B.4 Execution Time Analysis

