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Abstract. In this work, we design and implement a framework, PrE-
DeC, which enables an attacker to violate user privacy by using the
encrypted link-layer radio traffic to detect device types in a targeted envi-
ronment. We focus on 802.11 traffic using WPA2 as security protocol.
Data is collected by passive eavesdropping using COTS radios. PrEDeC
(a) extracts features using temporal properties, size of encrypted pay-
load, type and direction of wireless traffic (b) filters features to improve
overall performance (c) builds a classification model to detect different
device types. While designing PrEDeC, we experimentally record the
traffic of 22 IoT devices and manually classify that data into 10 classes
to train three machine learning classifiers: Random Forest, Decision Tree
and SVM. We analyze the performance of the classifiers on different block
sizes (set of frames) and find that a block size of 30k frames with Random
Forest classifier shows above 90% accuracy. Additionally, we observe that
a reduced set of 49 features gives similar accuracy but better efficiency
as compared to taking an entire set of extracted features. We investigate
the significance of these features for classification. We further investi-
gated the number of frames and the amount time required to eavesdrop
them in different traffic scenarios.

Keywords: Encrypted network traffic - Classification - Machine
learning

1 Introduction

According to [7], the number of IoT devices in 2016 has reached 6.4 billion and
is expected to hit the 20 billion mark by 2020. This proliferation of IoT devices
and wireless connectivity brings about questions of security and privacy. The
large volume of data generated by IoT devices can allow those with access to
the data to violate the privacy of the device owners.

Encryption techniques in protocols such as WPA2 are intended to preserve
confidentiality of data transferred over wireless networks. However, traffic analy-
sis can be done even on encrypted link-layer traffic, using header information
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and other parameters such as size and temporal properties. This was demon-
strated in works such as [18,19], where features extracted from encrypted link-
layer traffic were analyzed to determine a user’s online browsing activity and
smartphone app usage activity. In this paper, we investigate the possibility of
analyzing eavesdropped WiFi link-layer traffic from devices to determine their
type. If devices can be classified by type, an attacker can determine which types
of devices are present in her surroundings, posing a privacy threat to the users
of those devices. For example, an attacker’s knowledge about device types on a
company’s premises would lead to information leakage about the presence and
absence of people in particular locations (such as meeting rooms). The attacker
might also obtain more details about the company’s operations (for example,
how many security cameras or laptops are present on the premises) or employ-
ees’ lifestyles (how many employees are using fitness tracking devices). Further-
more, the attacker can use the knowledge of device types to exploit vulnerabil-
ities associated with a specific type of devices. For example, the article in [13]
reported more than 400,000 D-Link cameras, recorders and storage devices that
were affected by a single vulnerability. An attacker might detect cameras in her
environment and attempt camera-specific attacks on her surrounding devices.
The attacker might also be correlate traffic to confidential activities such as the
activation of an alarm system.

We propose the Privacy Exposing Device Classifier (PrEDeC), a framework
that can be used to detect the presence of different types of devices in a wireless
environment. PrEDeC takes eavesdropped encrypted link-layer traffic as input.
PrEDeC does not require specialized equipment to obtain the traffic; it uses
commercial-off-the-shelf (COTS) radios for eavesdropping. It extracts features
from the traffic and uses trained classifiers on them to classify device types. In
this paper, we focus on IoT devices such as IP cameras, Amazon smart speakers,
smart printers and smartphones that communicate using the 802.11b standard.

We summarize our contributions as follows:

— We propose a framework, PrEDeC, that performs device type classification
on eavesdropped encrypted link-layer wireless traffic using machine learning
techniques.

— We present an implementation of the proposed framework and discuss which
features of the traffic along with classification model are most relevant in
device type classification.

— We investigate the accuracy of our implementation by performing experiments
with a set of WiFi enabled devices in a controlled environment and compare
the performance of three classifiers.

The paper is organized as follows. Section2 briefly mentions the relevant
background for our work. The attacker model and the classification framework is
described in Sect. 3. Framework implementation is described in Sect. 4. Section 5
talks about the data sets used in our experiments, and the performance metrics
for analysis. Related works are described in Sect. 7. We conclude the paper and
discuss possible future work in Sect. 8.



Link-Layer Device Type Classification on Encrypted Wireless Traffic 249

2 Background

In this section, we briefly describe WiFi frame structure and the encryption
technique used in WiFi.

2.1 WiFi Frame Structure

We consider wireless traffic that uses the 802.11 standard. A frame in 802.11 has
the following fields as shown in Fig. 1:
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Fig. 1. IEEE 802.11 frame format.

1. Frame Control: This field consists of 11 sub-fields. It provides details about
the frame’s functions. It specifies the protocol version, type (management,
control, data or reserved) and sub-type of the frame. It also has two sub-
fields to indicate whether the frame is headed for a distribution system. Other
sub-fields provide information such as the fragmentation, power management,
order and re-transmission in the frame. Out of these fields, the type and sub-
type play an important role in our analysis. Management frames facilitate
communication among devices and have 12 sub-types. Control frames help in
fair channel access among the contending devices and have 7 sub-types. Data
frames carry payload in the frame body and have 9 sub-types.

2. Duration or ID: This field can take different values depending on the type
and sender of the frame. It can be a station identifier, a duration or a fixed
value. This field is not considered in our analysis.

3. Address: There are up to four address fields. These fields indicates the MAC
addresses involved in sending and/or receiving the frame. These fields are
used to correlate the device with its activity.

4. Sequence control: This field is used to indicate message order and help in
identifying frame duplication. This field is not considered in our analysis.

5. Payload: This indicates the data content of the frame. Since the payload can
be encrypted in case of WPA2, we do not use this field in our analysis. We
only consider the size of the payload.

6. Frame Check Sequence: This field is used to check the integrity of the frame.
This field is not considered in our analysis.

2.2 802.11 and WPA2

WiFi Protected Access 2 (WPA2) was developed to enhance the security mech-
anisms in WiFi networks. It introduced new protocols (4-way handshake, group
key handshake) for key establishment and key change that would enable secure
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communication among authenticated parties. It also uses a stronger encryption
protocol, CCMP, to encrypt the data. A CCMP data unit consists of the frame
header, a CCMP header, the data unit, a MIC (Message Integrity Code) and
the FCS (Frame Check Sequence). Out of these fields, only the data unit and
the MIC (which protects the integrity of the message) are encrypted. The frame
header is not encrypted. In this work, we consider only the header information
of the frame and the size of the payload for our classification problem.

3 Link-Layer Device Type Classification on Encrypted
Wireless Traffic

In this section, we describe the system model, and the attacker model with possi-
ble exploits. We then present the Privacy Exposing Device Classifier (PrEDeC),
a framework to train classifiers and apply them for device type prediction.

3.1 System and Attacker Model

We consider a scenario where there is a set of devices that can communicate
wirelessly. The devices need not be active at all times. In addition, the number of
devices in the scenario does not remain constant, i.e., devices can be introduced
into or removed from the system.

The attacker model consists of an attacker who can passively eavesdrop the
wireless traffic of these devices. The attacker does not have prior knowledge of the
devices in the network. Furthermore, she does not perform active probing of the
devices and does not attempt to decrypt the wireless traffic. The attacker uses
commercial off-the-shelf radios (e.g. wireless adapters in a laptop or raspberry Pi)
to perform traffic captures. She has a pre-trained classifier, and eavesdrops for
a period of time which allows her to obtain sufficient traffic samples to perform
device type classification. The attack scenario is visualized in Fig. 2.

ﬁ — ﬁ
e\ ((( )))0 Altacker (( ’)

Fig. 2. Attack scenario. Encrypted traffic is observed and devices are classified.

3.2 PrEDeC

Privacy Exposing Device Classifier (PrEDeC) is a framework that enables an
attacker to classify device types based on eavesdropped encrypted wireless traffic.
An attack using PrEDeC consists of two phases:
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Training Phase. This phase is run offline, before the actual attack. During the
training phase, the attacker uses wireless traffic from a set of IoT devices to train
a machine learning algorithm that can perform device type classification. The
attacker performs three actions in this phase—data collection, feature extraction
and selection, and model training in this phase. In the data collection step,
she uses a COTS radio in monitor mode to passively eavesdrop wireless traffic.
She has a number of IoT devices of different types, e.g., smartphone, camera,
smart light, etc., from which she gathers traces. The eavesdropped traffic is
stored in pcap files for analysis. The second step involves extracting features
from the link-layer frames in the files. Features include the type and sub-type,
size, direction, inter-arrival time and rate of frames. The feature extraction step
produces signatures (a set of features) for every device (represented by its MAC
address) present in the trace. The attacker uses certain statistical techniques
to obtain a reduced number of features effective for efficient classification. The
attacker does not consider MAC address and the manufacturer information that
can be obtained from a MAC address as features believing that it may not have
any correlation with the type of services provided by a corresponding device.
The attacker appropriately labels (which indicates the device types) each of the
MAC addresses present in the trace to properly correlate the high level activities
performed by the corresponding devices. In the third step, the attacker provides
the set of labels and signatures as input to train a model. The attacker can
experiment with different models to obtain the best one for classification. The
model training step also provides insight into which features were most helpful
for classification. This, in turn, can be used as feedback to fine-tune the feature
selection process. The attacker can repeat the three steps till she obtains a
trained model with an optimized list of features for a large set of device types.
She can then use this classification model to attack an unfamiliar environment.

Attack Phase. During the attack phase, the attacker eavesdrops wireless traffic
from her target area. She performs feature extraction on the eavesdropped traffic
and passes the list of signatures to her trained model. The model outputs the
predicted device label for every MAC address present in the trace. The attacker
can hence determine what type of devices are present in her environment.

4 Implementation of Framework

In this section, we describe the implementation details of the PrEDeC framework
used to perform the attack described in Sect.3. The framework is shown in
Fig.3. PrEDeC has six modules: data collector (optional), feature extractor,
feature pruner, device annotator, model trainer and model tester. Each module
is described in detail below.

4.1 Data Collector

The data collector performs passive eavesdropping of WiFi traffic and provides
the sniffed WiFi frames as input to the rest of the framework. A number of
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Fig. 3. PrEDec framework.

COTS tools can be used to capture the frames. In our case, we use a TP-Link
TL-WN722N wireless adapter (in monitor mode) and Scapy (a python library
for packet capture and analysis) to perform the traffic capture [15]. We set the
adapter to perform channel hopping, so as to capture traffic on all fourteen
WiFi channels. Since the adapter stays on a single channel at a time, frames on
channels the adapter is not listening on will not be captured. Hence, the data
collector captures a subset of the overall traffic. The sniffed frames are written
to pcap files, which are then provided to rest of the framework as input.

4.2 Feature Extractor

The feature extractor extracts features from the frames collected by the data
collector. We implement the feature extractor using Scapy. The feature extrac-
tion process consists of two steps. In the first step, certain fields are extracted
from every frame in the PCAP file. These include the header information, the
frame size and the timestamp of frame’s capture. We refer to these fields as basic
features. In the second step, the set of basic features are grouped based on the
MAC addresses to compute, what we term as, processed features. However, since
there may not be any correlation between the service(s) provided or activities
performed and the MAC address used by a device, we do not use MAC address
or manufacturer information (that can be obtained from a MAC address) as a
feature in our work. This step takes one input parameter, called as block size.
Block size indicates the minimum number of frames that is required to start com-
puting the processed features. If an input pcap file contains more than the block
size number of frames, we divide the frames into groups containing the block
size number of frames and process each group separately. The processed features
can be broadly grouped into five categories: rate, fraction, ratio, load and delta.
Parameters used to compute the processed features are shown in Table 1.
Features in the rate category describe the rate at which frames are received
or sent by a device. They are computed by calculating the number of frames
of a particular type or sub-type to the observation window size. Features in
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Table 1. Parameters used to calculate processed features.

Notation

T(f)
First(mac, tp)

Description

Timestamp of a frame f
T(f) of first frame of type/sub-type tp containing MAC address mac

Last(mac,tp) |T(f) of last frame of type/sub-type ¢p containing MAC address mac

W (mac, tp) Observation window size = Last(mac, tp) — First(mac, tp)

C(mac, tp) Number/size of frames with MAC address mac and type/sub-type tp
S(mac, tp) Number/size of frames sent by a given mac of type/ sub-type tp
R(mac, tp) Number/size of frames received by a given mac of type/ sub-type tp

len(mac, tp) Size of frame of type/sub-type tp for mac

gaps(mac, tp)

Inter-arrival times of frame of type/sub-type ¢p for mac

the fraction category are of two types—aggregated and individual. Aggregated
fraction features provide an indication of the contribution of each device to the
total traffic. Individual fraction features provide an indication of the frame type
composition for each device. The ratio category features look at the direction
of the traffic and group it into sent and received traffic. Features in the load
category calculate the mean and standard deviation of the sizes of different
frames types. The delta category features consider the inter-arrival times of
different frame types and calculate the mean and standard deviation of these
times. The formulas to calculate the processed features are shown in Table 2.
Features in the rate, fraction and ratio categories are computed in terms of both
the number of frames and the sum of the sizes of the frames.

Table 2. Processed feature categories.

Feature | Notation Calculation

Rate t(mac, tp) 75((7:1?;’;’; ))

Fraction | fo(mac, tp) %
fi(mac, tp) %

Ratio | rs(mac, tp) %
rr(mac, tp) %

Load sm(mac, tp) | mean(len(mac, tp))
sa(mac,tp) | std(len(mac,tp))

Delta dm (mac, tp) | mean(gaps(mac, tp))
dq(mac, tp) | std(gaps(mac, tp))

4.3 Device Annotator

The device annotator assigns a label to each MAC address seen in an environ-
ment during the training phase. A label is determined by the functionality of
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a device. If a device has multiple functionality, the label will be assigned based
on the discretion of the user of the classifier. In this work, we perform man-
ual labeling of the devices. Table 3 shows the set of devices in our experimental
setup—their manufacturers, function(s) performed and the labels assigned by
the device annotator, along with a numerical ID. In the rest of the paper, we
shall use a device and a MAC address anonymously to indicate a same thing.

Table 3. Devices used in our experiments and their labels.

Label | Manufacturer Function (s) Device label
I Belkin WiFi access point Access point
II Withings/Netatmo | Surveillance camera Camera

IIT Intel Laptop Laptop

v Belkin Access point using Ether MAC address Other AP
A% Alfa Personal desktop computer with WiFi adapter | PC

VI HP Printer, scanner, and fax machine Printer

VII Raspberry Pi WiFi monitoring device Rasp. Pi
VIII | Philips Smart light controller Smart light
X LG Smartphone Smartphone
X Amazon Echo Smart speaker Speaker

4.4 Feature Pruner

Feature pruner removes those features that may be redundant for efficient clas-
sification. Features are extracted, by the extractor module, without looking into
any feature-to-feature dependency or correlation. Feature pruner does some sim-
ple statistical analysis such as calculating standard deviation and variance infla-
tion factor to identify a set of important features to be used for efficient classi-
fication. It follows the steps below to obtain a reduced set of features that can
have higher impact on classification:

1. Removes a feature having a constant value (i.e., standard deviation = 0) across
all the devices, assuming it may not have any impact on the classification.
Sometimes, such features can be seen due to the fact that frames with certain
sub-types are not seen in the network.

2. Removes a feature from a pair of features having high correlation coefficient.
It finds all pairs of independent features with an absolute value of Pearson
correlation coefficient greater than 0.5. For each of those pairs, it finds the
VIF (Variance Inflation Factor) and discards the one having greater VIF. The
procedure is repeated until no pairs have high correlation coefficient. We use
‘usdm’ package in R for this purpose.
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4.5 Model Trainer

The model trainer takes two inputs—the set of signatures from the feature pruner
and the set of MAC addresses to device types mapping from device annotator.
Note that MAC address is used only for annotating a signature, not for classifica-
tion. The trainer produces a trained model which will then be used in future pre-
dictions. We experiment with three supervised machine learning algorithms for
the model trainer—CART (Classification And Regression Tree), RF (Random
Forest) and SVM (Support Vector Machine). We implement the model trainer
module using the following R packages: ‘rpart’, ‘randomForest’ and ‘e1071’ for
CART, RF and SVM respectively. We perform 10-fold cross-validation using the
‘caret’ package when building the models. The model trainer also provides a
ranking of features based on their importance in the classification task. This can
help to fine-tune the set of features for future classification tasks.

4.6 Model Tester

The model tester takes a trained model and a set of signatures from the feature
extractor and produces a predicted set of labels corresponding to each MAC
address present in the signature set. It also provides feedback on the contribution
of each feature towards the classification task.

5 Experimental Setup

In this section, we describe the experimental setup and the metrics we use to
evaluate PrEDeC.

5.1 Data Collection

In our experimental setup, we use 22 devices which are grouped into eleven
types based on functionality (Table 3). We collect three sets of WiFi traffic data
under different scenarios and durations. The amount of activity of the devices
in the experiments varies based on the scenario. An overview of our test sets is
shown in Table4. Set I is collected in an office environment on a working day,
over a period of about 3h. In this set, the devices have medium usage. Set II is
collected over the weekend (36 h of data) when the devices are relatively inactive.
Set IIT is collected under more controlled settings. The devices are placed inside
a shielded room [14] and are subjected to heavy usage (high activity scenario)
for about 9h. Note that since Set I and Set II are not conducted inside the
shielded room, they have a large number of unknown devices, which we exclude
from our analysis. In addition to this, in Set II, there is a OnePlus smartphone
which produces several probe requests with random MAC addresses. We do not
consider these addresses in our evaluation and plan to explore the impact of
MAC randomization on classification in future work. We divide the datasets
into training and test sets for our evaluation.
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Table 4. Datasets used for performance evaluation.

Set | Purpose | Period Total size | #packets | #MAC | #Types | #Unknown | #known
(in hours) | (in MB) | (x1000) devices devices
I Train 2.2 109 450 244 10 224 20
I Test 0.53 22 100 241 10 219 22
II | Train 28 157 700 252 10 240 22
II | Test 8 40 183 239 10 227 12
III | Train 6.00 891.3 2272 38 10 23 15
IIT | Test 2.82 372.7 972 37 10 22 15

5.2 Performance Metrics
We use the following metrics to evaluate the performance of PrEDeC:

1. Accuracy — The ratio of the number of correct predictions to the total number
of predictions.

2. Precision — The ratio of the number of correct predictions to the total number
of predictions for a particular type of device.

3. Recall — The ratio of the number of correct predictions to the number of
devices present of a particular type.

4. F-score — The harmonic mean of precision and recall, i.e., f-
score = (2 * precision * recall) /(precision + recall)

While the accuracy measures the overall correctness of the predictions, preci-
sion and recall provide an indication of performance on individual device types.
F-score is the combined performance of precision and recall of a classification.
These metrics can be derived from the confusion matrix.

6 Performance Evaluation

In this section, we evaluate the performance of our classifier, PrEDeC. The fea-
ture extractor of the classifier extracts 853 processed features for each distinct
MAC address from the corresponding group of frames. Recall that feature extrac-
tor, at first, divides the frames in blocks, and then groups the frames in a block
based on MAC address. Classification is performed in two phases: first, using all
features (about 476 in number) having non-zero standard deviation, and then
with features (about 49 in number) having low or no pairwise correlation.

We apply our classification on each data set separately and observe very
different performance on every data set. For example, Set I and Set III pro-
duce relatively low accuracy (from 70-80% on an average for all the classifiers),
whereas Set II produces very high accuracy (about 90% on average). Delving
deeper, we observe that Set IT has got the data set when the status of individual
devices did not change much as it was collected during the weekend. Hence, sig-
natures in both the training and testing data are very similar for every device.
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However, Set I and Set III consist of traces where devices were actively used.
Hence, the devices changed their statuses, which leads to relatively diverse sig-
natures for them. We combine the data sets into one set to get a good mix of
different training and testing signatures. The results reported in the rest of the
paper are obtained from this combined set of data. Note that total number of
signatures will vary depending on block size, which is an input parameter to
our framework. To evaluate performance, we consider the same block size for
training and testing in our experiments.

6.1 Classification Using All Features

We first investigate the performance of three classifiers—CART, RF and SVM
for different block sizes. This set of experiments is performed using all features
having non-zero standard deviation (476 features). Figure 4A shows the variation
of overall accuracy with different block sizes (let us denote block size by {2) for
the three classifiers. Accuracy in the CART classifier varies from 45% to 60%,
and it achieves maximum accuracy when (2 =5k, 10k, 20k or 30k. The SVM
classifier shows a relatively higher variation in accuracy, between 35-90%, and it
achieves more than 80% accuracy only when {2 = 30k. Accuracy turns out to be
more than 90% in the RF classifier irrespective of block size. Note that the block
size and the number of signatures are inversely proportional. The RF classifier
has high overall accuracy with 2 = 30k, 40k or 50k.

Accuracy
Avg. Precision

Avg. Recall
Avg. F-score

Block Size © Block Size

Fig. 4. (A) Overall accuracy (B) Average Precision (C) Average Recall (D) Average
F-score for different block sizes in CART, RF, SVM.

Figure 4B shows that the precision (averaged over all device types) varies
between 21-27% and 25-90% in CART and SVM respectively. In fact, we observe
that the CART classifier fails to detect some types of devices such as the smart



258 R.R. Maiti et al.

speaker during our experiments (results not reported due to space constraints).
It shows almost the same precision over {2=>5k to 30k. SVM classifier shows
a similar trend as in the case of accuracy, with 2 =30k producing the highest
precision. It is observed that SVM sometimes fails to classify a few types (for
example, the Raspberry Pi) when (2 becomes more than 30k. The precision
remains above 90% in RF classifier, and 2 =30k shows the highest precision
though there is no large reduction in precision with higher (2. This classifier
detects all types with more or less same precision with any 2.

Figure4C shows that the recall (averaged over all device types) varies
between 30-38% and 25-85% approximately in CART and SVM classifier respec-
tively. SVM classifier finds all the devices only in case of {2 = 30k. For other values
of £2, it fails to find 4-5 types of device on average. Again, it is interesting to
observe that RF classifier provides consistently good (more than 90%) recall
with any block size. Finally, F-score (averaged over all device types) shows that
RF classifier outperforms the other two classifiers by a high margin in general,
except for that in SVM with {2 = 30k. This set of experiments clearly shows that
the RF classifier performs much better than other models irrespective of block
size. The block sizes of both 30k and 40k show better results in all three classi-
fiers with any metric in general. However, we chose smaller block size (30k) as
it can potentially improve run-time efficiency. Hence, the results in the rest of
this paper are reported based on RF classifier with 30k block size.

6.2 Classification Using Optimized Set of Features

We analyze the classification performance with a reduced set 49 of features after
VIF analysis (see Sect. 4.4). We report the results only for the RF classifier with
30k block size. Table5 shows the change in the performance with the reduced
feature set when classifying the same set of data used in the previous section.
The confusion matrix is shown in Table 6. We notice that the accuracy, precision,
recall and f-score reduce by approximately 2%. However, since the reduction in
number of features is very high (476 — 49 = 427 features are removed after VIF),
this analysis can be useful in improving the efficiency of the framework without
a significant reduction in accuracy.

Table 5. Change in accuracy, precision, recall and f-score due to feature pruning.

Accuracy | Precision | Recall | F-score
All features 0.98 0.98 0.97 1097
% Change with reduced features | —1.64 —-1.31 -3.17 | —2.29

Furthermore, we look at the distribution of importance of the 49 features in
RF classifier to find other avenues for feature reduction. The importance value
of each of these features, grouped by category, can be seen in Table 7.
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Table 6. Confusion matrix of RF classifier with 30k block size. Columns and rows
indicate the number of the actual tags and the predicted tags respectively. Type IDs
here are as shown in Table 3.

TypeID I |II |III |[IV |V |VI | VII VII|IX X
I 36 0| 0 00010 0] 0
II 0125 | 0 110/ 01]0 211
111 0 0 |36 00 01O 13
v 0 0| 0132 00010 0] 0
\% 0 4,0 1/111 | 0] 0 | 1 110
VI 0 0| 0] O 036 0 | 0 0] 0
VII 0 0| 0] O 0|06 |0 0] 0
VIII 0 0| 0] O 0| 0] 0 |29 0] 0
IX 0 21 2|0 0| 0] 0|0 [29] 0
X 0 1,00 0|00 0|32

Table 7. Mean and standard deviation of the importance values of the features in
reduced set, for each category of features.

Category | Parameter Mean % importance | Standard deviation
Rate Frames count 1.21 1.32
Frame size 0.76 0
Fraction | Frames count 0.02 0.02
Frame size 2.73 0.90
Ratio Frame count 0.03 0.02
Frame size 4.76 4.35
Load Mean 3.14 3.59
Standard deviation | 1.16 1.61
Delta Mean 2.12 3.59
Standard deviation | 2.70 0
Number | Frame count 0.21 0.32
Frame size 2.68 1.74

We observe that only 2 features have a percentage importance greater than
10%. These belong to ratio and delta category of features. The feature contribut-
ing least belongs to delta category. We report the distribution of values to the
types of devices for two features, the most important and the least important
ones (Fig.5). The most important feature belongs to ratio category, and it is
the ratio of the size of the data frames received by a MAC address to the size
of all the data frames seen in a block. The least important feature belongs to
delta category and it is the mean time gap of the management type frames with
sub-type reserved for a MAC address. We see that the printer, camera, smart
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light and Raspberry Pi show much lower range of values in the ratio feature.
The delta feature shows lower spread in Raspberry Pi and smart speaker. We
plan to explore the classification efficiency by selecting features based on their
importance values in future work.

Rasp. Pi- == Rasp. Pi- *
Smart Light- * SmartLight- e ==e & ¢ ®
Smart Speaker - sses——s Smart Speaker- *
Smart Phone - me—s_ae ¢ . L SmartPhone - *
Printer- = Printer - **
pC- == - o pC- * @ s cocsm o ®
OtherAP- * OtherAP- =
Laplop - ¢ s mems o . . Laptop- * -
Camera- === Camera- *
AP - ¢ omommsmmemmesammts ¢ o AP - @ smese o o
0.0 0.2 04 0.6 0.8 0.00 0.25 0.50 0.75 1.00
Ratio: s(mac,data)/c(mac,x) Delta: mean(gaps(mac,mgmt:resv)
(a) (b)

Fig. 5. Distribution of values of the most (A), and least (B) important feature in RF
classifier belong to ratio and delta categories respectively (see Sect. 4.2).

6.3 Optimal Traffic Size

In this section, we investigate the number of frames needed to build a set of
effective signatures and the time period required to eavesdrop them. We consider
only the 30k block size in this analysis.

We see that it takes significantly different time durations on average to sniff
30k frames in the three data sets: about 550s, 4200s and 200s for Set I, Set
IT and Set IIT respectively. In addition, standard deviation on time durations is
very high in each of the data sets. We then look into average number of frames
per group used to build signatures. Recall that frames in a block are grouped
based on MAC address. It is observed that there is no direct correlation (Pearson
correlation coefficient = —0.06) between the number of frames and the observa-
tion window size for any particular device in our (both individual and combined)
datasets. However, we look for an average frame count and corresponding obser-
vation window size to get a rough estimation of the time required to sniff packets
in our scenarios. We plan further investigation in this direction as future work.

Table 8 shows the average number of frames and the average observation
window size used to build signatures for different types of devices in different
data sets. For example, on an average, 1450 frames have been used to build
signatures for the cameras and 771s are needed to sniff those many frames in
our combined data set. This analysis can be useful for an attacker to get an
estimation of number of WiFi frames and time to eavesdrop them to achieve a
certain accuracy.

6.4 Open Environment Experiment

We examine the performance of PrEDeC in an open, i.e., uncontrolled, environ-
ment using the RF classifier. We collect 1.1 million frames in 3.64h in a lounge
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Table 8. Number of frames (np) and corresponding window size (ws) per device types
when 30k blocks are used.

Set I Set 11 Set II1 Combined set
Device type np ws np ws np ws np ws
AP 5230 |525 17088 4310 |22245 [290 |19550|1182
Camera 257 359 2060 4229 1474 |271 1450 |771
Laptop 35 256 4683 4304 |7024 |288 5133 |1041
Other AP 17 183 | 214 4126 |21 213 |67 1143
PC 114 446 1138 4198 | 142 279 | 331 1086
Printer 800 512 | 7271 4301 | 742 289 | 2161 |1178
Raspberry Pi |16 251 | 1593 |4154 |- - 1120 | 2983
Smart Light 483 258 | 150 4093 |24 255 | 102 1181
Smart Phone |844 318 |- - 3094 | 257 | 2492 | 273
Smart Speaker | 3543 | 427 | 382 4178 |1121 269 |974 |1193
Average 1133.9 | 353.5 | 3842.1 | 4210.3 | 3987.4 | 267.8 | 3338 | 1203.1

area at our university. The RF classifier is trained using the data sets with 30k
block size mentioned in the previous sections. We note that in this scenario we
do not have the ground truth. However, by intuition, we would expect to see a
larger number of PCs, laptops, and smartphones in a university. We would also
expect to see a number of access points and IP cameras.

Table 9. Predicted device types in an open university environment.

Device | AP | Camera | Laptop | Other | PC | Printer | Rasp. | Smart | Smart | Smart
type AP Pi Light | phone | speaker
Count |1 |43 34 1 1843 0 5 256 2

Table 9 shows the results of our prediction using PrEDeC classifier. We get a
total of 3446 signatures with 529 unique MAC addresses in this dataset. We
observe that PrEDeC detects larger proportion of smartphones and PCs as
compared to the other devices. However, PrEDec detects only one access point
despite the presence of multiple access points in the test environment. Addition-
ally, the classifier detects 43 cameras, which is higher than the expected number.
On closer inspection, we observed that several access points were classified as
cameras. This is probably because we have only one access point in our training
set. We hope to increase the accuracy of classifying access points by including
more number of access points while training our classifier.
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7 Related Work

Significant research was conducted in the area of device fingerprinting using
link-layer information. Cache [4] used the duration field in 802.11 frames to
identify various WiF1i drivers. Franklin et al. [6] performed passive fingerprinting
of 802.11 drivers by analyzing the inter-arrival times of probe request frames
sent by different drivers. They employed a Bayesian classification method to
classify 17 drivers. Their approach was fine-tuned in [5] to distinguish different
operating systems using the same driver. Since different device types can have
the same driver, our work has a more fine-grained classification in comparison to
these works. Pang et al. [12] identified four metrics (network destinations, SSID
probes, broadcast frame sizes, MAC protocol fields) that would help identify
users from a network trace. Out of these, three metrics could be used even
with link-layer encryption. In comparison to [12], our work focuses on device
classification rather than user identification, and uses a larger set of features.

Hardware specific features such as clock skews [2,8] or radiometric signa-
tures [3,17] were used to identify unauthorized access points and wireless cards.
However, these features require precise measurement techniques or modification
of the wireless monitor’s driver. Hence, we do not consider these techniques in
detail in relation to our work.

Another related area of research investigates classification of application
behavior rather than device classification. Alshammari and Zincir-Heywood [1]
evaluated the performance of five learning algorithms in identifying SSH and
Skype traffic using flow based features. Korczyniski and Duda [9] identified Skype
service flows from TLS encrypted traffic. AppScanner [16], was a framework that
used bursts and flows in the network traffic to fingerprint Android apps (using
Random Forest). Our work is partly motivated by these works which suggests
that encrypted link layer traffic can also become a useful tool to detect the pres-
ence of certain type of services provided by the WiFi enabled devices, and such
detection would not require any active access to network infrastructure.

Zhang et al. [19] implemented a system to classify the type of online user
activity based on link-layer traffic features such as the size distribution, direc-
tion, inter-arrival time and type of frames. They used SVM (Support Vector
Machine) and RBFN (Radial Basis Function Network) algorithms to perform
the classification. Wang et al. [18] employed similar techniques to detect apps
used by a user on a smartphone by analyzing the link-layer traffic. They extracted
features such as frame size, frame direction and frame inter-arrival time to train
a Random Forest classifier and tested their implementation on 13 apps. [18,19]
are the most comparable to our work since we utilize a similar, though larger, set
of features in our classification framework. In addition, we focus on classifying
device types rather than user activity.

Relatively little work has been done so far in IoT device type classification.
Miettinen et al. [11] developed the IoT SENTINEL, a system that could identify
the type of IP-enabled devices connected to an IoT network and restrict traffic
from those identified as vulnerable. Meidan et al. [10] introduced ProfilloT, a
system that analyzed TCP sessions to distinguish IoT and non-IoT devices and
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identify the device class. Both these works employed machine learning techniques
to perform the classification. However, in contrast to our work, they look at
wired network traffic and make use of higher layer traffic information for their
classification. A comparison of the proposed framework, PrEDeC, and selected
related work is shown in Table 10.

Table 10. PrEDeC features vs. related work.

Related Layer Classified Wired/ | Active/ | COTS
work entity wireless | passive
Proposed work Link Device type | Wireless | Passive | Yes
Franklin et al. [6] Link Device driver | Wireless | Passive | Yes
Jana and Kasera (8] Link Device type | Wireless | Passive | No
Alshammari and Zincir-Heywood [1] | Transport | Service Wireless | Passive | Yes
Zhang et al. [19] Link User Wireless | Passive | Yes
Miettinen et al. [11] Multiple* | Device Type | Wired | Passive | No

*uses link, network, transport and application layer features.

8 Conclusion

In this paper, we designed PrEDeC, a framework that allows an attacker to
classify device types using encrypted link-layer WiFi traffic obtained by pas-
sive eavesdropping with COTS radios. We extracted 853 features from the WiF'i
frames based on properties such as size, timing and type. We optimized them
to a set of 49 features and evaluated three well-known machine learning algo-
rithms: Decision Tree, Random Forest and Support Vector Machine, to classify
devices. We evaluated the performance of our classifier using a data set collected
in our lab environment of three different traffic scenarios, totaling about 48 h
and 5.2 million frames. Our results showed that an accuracy of about 95% can
be achieved using the Random Forest classifier. Our investigation revealed that
an average of 3300 packets and an observation window size of about 1200s to
sniff them are needed to build effective signatures to achieve this accuracy in our
scenarios. It is observed that this estimation can vary significantly depending on
the status of the devices present in the target network, and further investigation
in this direction is planned as a future work. Finally, we have tested our classifier
in an open and uncontrolled university area, and we are successful in detecting
devices like laptops, smartphones and desktop computers in high numbers. How-
ever, our analysis in this case shows that it requires a larger number of devices of
certain types like smart lights and cameras to achieve more precise classification.
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