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ABSTRACT
Spoofing is a serious threat to the widespread use of Global
Navigation Satellite Systems (GNSSs) such as GPS and can
be expected to play an important role in the security of many
future IoT systems that rely on time, location, or navigation
information. In this paper, we focus on the technique of
multi-receiver GPS spoofing detection, so far only proposed
theoretically. This technique promises to detect malicious
spoofing signals by making use of the reported positions of
several GPS receivers deployed in a fixed constellation.

We scrutinize the assumptions of prior work, in particu-
lar the error models, and investigate how these models and
their results can be improved due to the correlation of errors
at co-located receiver positions. We show that by leverag-
ing spatial noise correlations, the false acceptance rate of
the countermeasure can be improved while preserving the
sensitivity to attacks. As a result, receivers can be placed
significantly closer together than previously expected, which
broadens the applicability of the countermeasure. Based on
theoretical and practical investigations, we build the first
realization of a multi-receiver countermeasure and experi-
mentally evaluate its performance both in authentic and in
spoofing scenarios.

CCS Concepts
•Security and privacy → Mobile and wireless security;
•Information systems → Global positioning systems;
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GPS, spoofing, countermeasure, localization security

1. INTRODUCTION
In recent years, the Global Positioning System (GPS) has

become a ubiquitous source of location, time, and naviga-
tion information for devices such as navigation units, mobile
phones, industrial control systems, financial trading plat-
forms, trains, ships, and ankle bracelets for criminals. Lo-
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calization services such as GPS are also expected to play
an important role in the context of the upcoming Internet
of Things (IoT) and cyber-physical systems as they often
involve mobile or time-dependent components, e. g., for au-
tonomous driving. Unfortunately, Global Navigation Satel-
lite Systems (GNSSs) are susceptible to spoofing attacks, in
which a malicious transmitter emits manipulated signals im-
itating real satellites. A spoofing attack can cause a victim’s
GNSS receiver to compute a wrong location and/or time so-
lution. As a result, an attacker may remotely inject fake
data into security- and safety-relevant systems.

In response to this threat, increasingly sophisticated meth-
ods for spoofing detection have been developed and were
analyzed to enable the real-time identification of ongoing
spoofing attacks, e. g., [1,2,5,8,12–14,16,20–22]. These coun-
termeasures can be categorized in two classes. The first set
of countermeasures is based on receiver observables [12, 33]
such as the number of visible satellites, clock and date in-
formation, received signal strength measurements from the
satellites, and verification of digital signatures (if available).
In [8], these countermeasures are classified as data-bit level
detection techniques. The second type of countermeasures
focuses on the signal-processing level. These countermea-
sures require custom receivers with elaborate signal pro-
cessing techniques and enhanced hardware. With custom
receivers, spoofing attacks can be detected, e. g., by esti-
mating the angle-of-arrival of navigation signals [13], their
carrier phases [20, 21], random antenna motion [14, 22], or
automatic gain control on the radio frontend [1].

However, the attacker model used in many of these coun-
termeasures considers single-antenna attackers that may not
make use of elaborate signal processing and mixing tech-
niques. We argue that an attacker with, e. g., an adaptable
GPS simulator, can generate spoofing signals with arbitrary
precision in data and signal characteristics such as the imita-
tion of satellite constellations, transmission power, and other
physical-layer characteristics. In addition, public GPS data
is not protected by signatures, so an equipped attacker can
also spoof the data content of the navigation messages.

We therefore advocate the use of a detection measure that
leverage signal properties which are impossible to spoof cor-
rectly for nearby or terrestrial attackers. In this work, we
focus on multi(ple)-receiver GPS spoofing detection [29] and
perform its first practical evaluation. The detection is based
on the location reported by two or more commercial-off-
the-shelf (COTS) receivers mounted in a fixed formation.
During an attack, a single-antenna attacker would spoof re-
ceivers to the exact same position solution, which can be
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used to detect the attack. It has been shown that—from a
certain number of receivers onwards—even a multi-antenna
attacker cannot succeed in maintaining a fixed formation, re-
spectively the relative distances, during the attack [29]. This
leads to the fact that this detection technique is principally
unspoofable as long as the attacker signals are received at all
receiving devices (which is hard to prevent if the receivers
are positioned close enough together).

A benefit of the multi-receiver detection mechanism is that
it can be realized with COTS receivers without changes
to the GPS infrastructure. The performance of the coun-
termeasure is expected to depend on the chosen distances
between the receivers, as in practice the location is influ-
enced by noise. Based on a rough estimation of required
distances, the authors of [29] suggested application settings
such as cargo ships or trucks. Following theoretic investiga-
tions [5, 26], performance values for distances between 10m
to 50m were derived analytically. As a result, the counter-
measure does not seem suitable for most moving vehicles,
but can only be applicable for large stationary installations.

To the best of our knowledge, the multi-receiver counter-
measure has not been practically investigated and validated
against real spoofing setups. In this work, we analyze the
models used in [5] and [26] and show that (i) nearby real-
world GPS receivers have correlated noise on their location
estimates, (ii) previous error models over-estimate the loca-
tion error in the attack case, and (iii) considering correlated
errors can drastically reduces the expected false detection
rate of the countermeasure while preserving the sensitivity
to attacks. As a result, a distance of 3m to 5m can be ex-
pected to be sufficient (in contrast to 10m to 50m) as we
show by simulations and experiments (for the same perfor-
mance criteria).

We validate our theoretical predictions using an experi-
mental setup with several receivers and a GPS satellite sig-
nal generator as spoofer, and we provide in-depth insights on
parameters and setups for a reliable operation of the coun-
termeasure. In summary, our work contains the following
contributions:

• We extend previous theoretical work on multi-receiver
spoofing countermeasures by modeling distance-related
errors with the goal to differentiate between error dis-
tributions during normal operation and under attack.

• We experimentally provide estimates of practical local-
ization noise in normal operation as well as in spoofing
scenarios showing that the noise is spatially correlated.

• We leverage these insights to show that the multi-
receiver spoofing countermeasures can be used reliably
in formations which are almost an order of magnitude
smaller than previously proposed (area of formation).

• We experimentally demonstrate that our countermea-
sure prototype can reliably detect real spoofing signals
utilizing four receivers in a mutual distance of 5m.

Our investigations and results demonstrate the applica-
bility of the countermeasure and will help users or engineers
to set it up accordingly. The countermeasure may be used
in static setups, e. g., in factories to prevent time spoofing,
as well as in mobile settings, e. g., on vehicles such as trucks
or airplanes to prevent location and navigation spoofing. As
an extension, we also envisage its use for highly mobile se-
tups such as drone formations. The evaluation framework
can serve as baseline for further investigations.

Figure 1: ToA of satellite signals. Left: The relative
ToA determines the localization result, exemplary
for two receivers and four satellites. Right: An at-
tacker generates spoofed signals for all four satellites
with some relative ToA. At each victim, the spoofed
signals have identical relative ToAs, but are overall
offset due to victims’ distances to the attacker.

2. GPS SPOOFING AND DETECTION
We start by briefly introducing GPS, errors in GPS, the

considered attacker model, and the concept of multi-receiver
spoofing detection. In general, the spoofing attacks and our
countermeasure should apply to any GNSS. In the context
of this work, we focus on GPS as its receivers and signal
generation devices are readily available. For a detailed de-
scription of GPS we refer to [6, 11,25].

2.1 GPS and GPS Spoofing
GPS is based on measurements of the time of arrival (ToA)

of signals sent by four or more satellites from medium earth
orbit. Based on the ToA of the individual satellite signals, a
pseudo-distance to each satellite can be computed. Based on
these pseudo-distances and the periodically embedded satel-
lite positions, a receiver can use multilateration to find its
local position and time (see Figure 1). The ToA measure-
ment for each signal is affected by a range of errors, which
we discuss in more detail in Section 2.2.

GPS provides two types of signals: (i) public GPS sig-
nals that can be received (and generated) by everyone with
suitable equipment, and (ii) military GPS signals that are
protected by (at least) secret spreading codes. In this work,
we focus on attacks and countermeasures for civilian sig-
nals, but we note that the underlying spoofing problem of
falsifying ToA of signals cannot be fully prevented by secret
spreading codes alone.

Spoofing attacks are based on the broadcast of false GNSS
signals in order to change the localization and time result
of a victim [7, 26, 29]. In this work, we focus on spoofing
attacks that target the ToA of signals and use otherwise
the same data content as real signals. These signals can be
generated by replaying previously recorded GPS signals or
by using a satellite simulator. Attacks that also change the
data content of the signals are discussed in [15].

2.2 GPS Error Sources
As GPS errors take a critical role in our countermeasure,

we discuss them in more detail. While the GPS localization
accuracy is sufficient to estimate a position within a few
meters radius, the system suffers under errors affecting the
deviation from the actual location. Due to the signal gener-
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Table 1: L1 C/A Error Sources and UERE [6], [18]

Type Error Source Total [m]

Satellite Ephemerides data 2.1
Satellite clock 2.1

Channel Ionosphere 4.0
Troposphere 0.7
Multipath 1.4

Receiver Measurement 0.5

UERE [m] 5.3

ation in space and a travel distance of more than 20,000 km,
GPS signals are affected by various error sources that can
be categorized into three groups [6]: satellite, propagation
medium, and receiver errors (see Table 1).

Satellite errors. Errors can arise from the satellite itself
in regard to clock biases and orbital drifts. For error mitiga-
tion the adjustable ephemeris data sent out by each satellite
include an estimation of the error characteristics.

Signal propagation errors. Environmental effects such as
ionospheric or tropospheric refractions are dependent on the
physical conditions on the propagation path. When GPS sig-
nals reach the earth’s surface they are potentially reflected
at obstacles leading to multipath effects that decrease the
signal-to-noise ratio (SNR).

Receiver errors. In addition to normal receiver noise (e. g.,
thermal noise in components), the receiver can suffer under
clock biases and center phase variations.

The combined error of all presented sources is summarized
in the User Equivalent Range Error (UERE) [25, p. 298]. A
quantifying analysis is conducted in [18]; its results in terms
of total error are given in Table 1. The given values are based
on a 1σ-probability level relating to the deviation in meter.
In order to evaluate the quality of the position solution, error
contributions can be estimated and periodically embedded
in the navigation message [18].

2.3 System and Attacker Model
We consider the following attacker model. The goal of

the attacker is to change the localization or time result of
one or more victims. The attacker is capable of generating
fake GPS signals with the same signal characteristics as au-
thentic GPS signals. We distinguish between two scenarios
for the attacker antennas: (i) a single-antenna attacker and
(ii) a multi-antenna attacker. In the first case, the attacker
is restricted to a single-antenna setup, where all spoofing
signals are sent from the same source. In the second case,
the attacker can utilize multiple antennas to have more free-
dom for the transmission of signals and can send potentially
different signals from various locations.

In this work, we assume that all receivers obtain signals
from the same sources, i. e., receivers are not shielded from
the reception of signals seen by other receivers. We gener-
alize our approach to protect against a single-antenna at-
tacker as well as a multiple-antenna attacker. As shown in
related work [29, 32], a single-antenna attacker can success-
fully spoof individual victims to an arbitrary location and
time by sending spoofing signals that have constant rela-
tive ToA with respect to each other, independently of the
location of the receiver (see Figure 1). As a result, multi-

ple receivers in range of the attacker all compute the same
localization result (with minor time differences due to their
respective distances to the attacker).

For the multi-antenna adversary model, spoofing individ-
ual position solutions for less than four receivers becomes
theoretically possible. We would like to stress that such an
attacker was only theoretically proposed in [29], but no prac-
tical implementations are known. Theoretically, an attacker
can generate and synchronize its antennas to adjust the ToA
of signals at each victim receiver. Practically, implementing
such an attack successfully is expected to be very challeng-
ing, as there are tight constraints on signal power and align-
ment [29]. We discuss the resilience of our countermeasure
to a multi-antenna attack in Section 8.

The problem of taking over an established lock, i. e., the
problem of taking over a victim’s fix to authentic GPS sig-
nals, is out of scope of this work. In order to induce a new fix
onto the spoofed signals (i. e., to replace legitimate signals),
an attacker needs to force a lock loss of the establish fix,
e. g., by prior jamming or high spoofing power [31]. Since our
countermeasure is based on the position information, we can
give the attacker the power to overcome prominent signal-
based countermeasures such as RAIM [12], signal power [33],
or angle-of-arrival [13] discrimination.

2.4 Multi-Receiver Spoofing Detection
Conceptually, a multi-receiver spoofing countermeasure

detects GPS spoofing attacks based on the location reported
by two (or more) COTS receivers at fixed known positions.
The receivers periodically compare their distances of the cal-
culated locations, e. g., using wired connections. In case of
authentic signals, the computed distances are expected to be
rather stable and close to the physical distances of the given
formation. In case of an attack, the computed distances
will shrink to values close to zero, as the receivers would re-
port the same location during a single-antenna spoofing at-
tack. Two receivers in appropriate distance to each other are
sufficient to detect single-antenna attacks; a multi-receiver
countermeasure with at least four receivers can also detect
attacks from multiple locations (Section 8). As it only uses
the localization result, a beneficial property of this coun-
termeasure is that it does not require any modification of
standard COTS receivers.

In this work, we provide detailed theoretical models and
experimental validation to find the required distances and
detection thresholds for bringing the multi-receiver counter-
measure to practice (see Figure 2). Being able to deploy the
receivers closer together has two advantages: (i) it broad-
ens the number of possible application scenarios and (ii) it
makes attacks based on individual spoofing (separate signals
for each receiver and shielding other receivers from recep-
tion) harder to achieve.

3. PRACTICAL SPOOFING DETECTION
We now introduce our detection mechanism and argue

that its performance depends on (i) the physical formation
of the receivers, and (ii) on the position solution noise ex-
perienced by the receivers. We then discuss both factors in
more detail. In particular, we predict that authentic sig-
nals and attacker signals have different noise characteristics,
which can be used to improve the performance of the coun-
termeasure.

239



Figure 2: Multi-receiver spoofing detection system
set up in a fixed formation. All receivers periodi-
cally compare their mutual distances. Normal oper-
ation: Distances will be constant (with minor vari-
ations due to noise). Spoofing: Locations will coin-
cide (again, with some noise).

3.1 Detection Mechanism
We assume that two (or more) GPS receivers are set up

in a known static formation. All receivers are continuously
obtaining their location via GPS, and a central controller
uses the locations to detect spoofing cases. Basically, our
detection mechanism compares the reported receiver loca-
tions in order to perform a binary classification into authen-
tic/spoofed situations. This decision is probabilistic and
considers the predefined receiver formation, its fixed rela-
tive distances, and the noise characteristics of the receivers.
The detection model is based on work in [26–28]; it distin-
guishes between two potential detection outcomes based on
the presence of an attack. The considered hypotheses H0

and H1 are:

H0: No spoofing occurred.

H1: Spoofing is performed.

The decision making is based on the preservation of known
receiver distances. If the system detects significant anoma-
lies, the test should indicate a spoofing attack. In contrast
to the absolute positions in [27], our detection is based on
relative distances between all pairs of receivers. The mecha-
nism is a function of the reported position information and
a comparison against a decision threshold λ to be defined.
The adapted test can be formally expressed as:

f (P1, . . . ,Pm)
H0

≷
H1

λ, (1)

where m denotes the number of receivers and their respec-
tive position is Pi, i ∈ {1, . . . ,m} and f() is a function on
the distances. Each position Pi consists of a latitude and
a longitude component. The position also contains altitude
information, which is neglected here due to the low precision
of GPS altitude. To simplify the discussion, we assume that
for our countermeasure all receivers are placed at approxi-
mately the same height. We analyze possible functions (e. g.,
minimal, maximal, or weight-based approaches) and their
effects on attack detection in more detail in Appendix A.

Since we only consider the relative distances between re-
ceivers, we can detail (1) to directly take the set of distances
di,j as input:

f(di,j) := f

({
di,j
}1≤i,j≤m

i<j

)
H0

≷
H1

λ. (2)

If the result of function f on the distances between the
receivers falls below the threshold λ, the test indicates a
spoofing attack (H1). However, if the result is above the
threshold λ, the test decides for no spoofing (H0). Notably,
since the absolute positions contained in (1) are not crucial
for our spoofing detection, there is no information loss from
(1) to (2). Hence, we can safely use (2), which contains all
distances clearly defining the underlying formation.

On the basis of (2), we can define two important proba-
bilities in regard to the detection and the false alarm ratio.
The probability of detection pd describes the chance that an
actual spoofing attack is indeed detected. Thus, the result
of f needs to be below the threshold λ:

pd = Pr{f (di,j) < λ | H1},

with 1 ≤ i < j ≤ m. On the other hand, the false alarm
probability pfa describes the chance of triggered alarms when
no spoofing occurs. The result of f needs to be above the
threshold λ, which can be described as:

pfa = Pr{f (di,j) < λ | H0}.

Considering both equations, we need to optimize λ with
the purpose of achieving high detection rates while main-
taining a low probability of false alarms. If the receivers
were to obtain their position solution without any error, they
could perfectly detect spoofing attacks even if their mutual
distances are very small (e. g., a few centimeters). Unfortu-
nately, GPS receivers have a non-negligible position-solution
error in practice (as discussed in Section 2.2).

3.2 Countermeasure Formation
The general receiver formation for our countermeasure

considers a virtual center, around which the receivers are
placed. In particular, receivers are placed equidistantly on
the edge of a virtual circle with the aforementioned center.
With this constellation, a multi-receiver setup can be real-
ized in a compact way and the setup is extendable while
keeping the same radius of the circle.

We denote the number of receivers as m and the radius of
the circle is defined as r, while the resulting distance between
neighbors is d. For instance, for m = 2 each receiver is
placed on the opposing side of the circle. As a result, for
a given radius r the distance becomes d = 2r. For m = 3
we obtain a triangle and for m = 4 the formation becomes
a square with equal edge lengths. The relationship between
m, r, and d can be formulated as:

d = 2r · sin
(

2π
2m

)
.

Notably, the more receivers we use, the more different
distances between all possible receiver pairs are obtained and
are used by the function f . While for m = 2 we only have
one single distance, for m = 4 we already have six (partially
dependent) distances. For the actual detection system, we
mostly consider a setup with m = 4 receivers. That is the
least amount of receivers required while protecting against
the multiple-antenna attacker [29].
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3.3 Leveraging Environmental Errors
The noise of the position solution experienced by the re-

ceivers is a determining factor for the performance of our
countermeasure. We introduced general GPS errors in Sec-
tion 2.2, and we now apply the general error model to our
spoofing scenario.

In prior work [26], the position solution error (UERE)
was modeled to be identical for authentic and spoofing sig-
nals. We now argue that this is not the case in practice,
and a more realistic model can improve the countermeasure
performance. On closer inspection, the UERE is a composi-
tion of two components. The satellite system-intrinsic User
Range Error (URE) includes environmental errors, whereas
the User Equipment Error (UEE) is caused by the receiver
design [30]. This is particularly relevant for two reasons:

(a) We claim that the environmental errors are to a cer-
tain degree location-specific—i. e., several receivers at the
same location will experience correlated environmental er-
rors. The intuition is that this will make our countermea-
sure more reliable in normal operating conditions, as posi-
tion shifts are partially correlated.

(b) During a location spoofing attack, an attacker has
potentially large influence on the environmental error, but
this error will be roughly the same for multiple victims. In
particular, the attacker has control over the ephemerides
data and satellite clock offsets in the spoofing signals. In
addition, the attacker is comparably close to the receivers,
so that multipath effects are greatly reduced. As a result,
our intuition is that in an attack scenario, the location dif-
ferences of several victims are less noisy than under normal
operation (i. e., their UERE is expected to develop a stronger
correlation).

In order to get a better understanding of the impact of
correlation, we have a look at the calculation of a (noised)
1D distance:

d (Pi + ni,Pj + nj) = d (Pi,Pj) + ni − nj ,

where ni and nj is the noise for Pi and Pj , respectively.
The actual distance d (Pi,Pj) is impacted by the combined
noise ni − nj . If both noise sources are independent, there
is no tendency on how the calculated (noised) distance will
behave. However, when the sources are correlated they will
compensate each other to a certain degree, which can be
calculated by:

σd =
√

σ2
i + σ2

j − 2ρi,jσiσj
σi=σj
=

√
2σ ·
√

1− ρi,j ,

where σd is the standard deviation of the distance, σi and σj

the standard deviation of Pi and Pj (assumed to be roughly
equal), and ρ is the Pearson correlation coefficient given as:

ρX,Y =
cov(X,Y )
σXσY

, (3)

with X and Y being two datasets of the same length. In
particular, the correlation coefficient is a measure of linear
dependence between these two datasets. A value of 0 in-
dicates no correlation, whereas +1 and −1 represent total
positive, respectively total negative, correlation. As a re-
sult, the stronger the correlation between the experienced
noise, the less noisy are the mutual distances. Similar con-
siderations apply to the cases of 2D latitude and longitude
components as well as multidimensional points.

3.4 Error Modeling and Distribution
In addition to our model of the receiver formation and the

general error sources, we also need a more detailed model
to describe the error distribution. Based on those models,
we can perform simulations to determine suitable distances
between the receivers and optimal decision thresholds. Ac-
cording to the GPS performance standard [30], we assume
that the receiver’s position errors are Gaussian distributed
in latitude and longitude. If mean and standard deviation
for each direction are known, we can compute probability
functions and make predictions for the error distribution.

However, our scheme is based on relative distances and
thus combines both directions. Following [26], we assume
that distance-related errors are Gaussian distributed with
approximately the same standard deviation in latitude and
longitude. We also assume that the correlation between
changes in each direction exhibits similar characteristics. By
making these simplifications, the error distribution of the
Euclidean distance of two 2D-Gaussian distributed points
can be formulated in a closed form. Notably, we use the dis-
tance projected on a two-dimensional plane neglecting the
curvature of the earth for small distances.

The resulting mathematical model, which describes the
distribution of the distances between one 2D-Gaussian dis-
tributed point and a fixed point, is a Rician distribution. We
extend the model by replacing the fixed point with a second
2D-Gaussian distributed point. If the standard deviation
and the correlation are the same, the adjusted distribution
maintains its Rician property.

The probability density function (PDF) for a Rician dis-
tribution is given by:

f(x) =

{
x
σ2 e

− x2+s2

2σ2 I0
(
xs
σ2

)
, x > 0,

0, x ≤ 0,
(4)

with noncentrality parameter s reflecting the distance to the
center and scale parameter σ as the standard deviation of the
Gaussian distribution. I0 denotes the zero-order modified
Bessel function of the first kind.

The cumulative distribution function (CDF) is defined as:

F (x) =

{
1−Q1

(
s
σ ,

x
σ

)
, x > 0,

0, x ≤ 0,
(5)

where Q1 is the first order Marcum Q-function.
Due to our adaptions and the addition of a second Gaus-

sian distributed point, the noncentrality parameter s and
the scale parameter σ of the resulting distribution are not
equivalent to the distance nor the standard deviation (but
are very close to the actual scales).

For the special case of two 2D-Gaussian distributed points
with the same center, s becomes 0. As a result, a Rayleigh
distribution is obtained, which is only dependent on the scale
parameter σ.

Thus, the PDF simplifies as follows:

f(x) =

{
x
σ2 e

− x2

2σ2 , x > 0,

0, x ≤ 0.
(6)

The corresponding Rayleigh CDF is:

F (x) =

{
1− e−

x2

2σ2 , x > 0,

0, x ≤ 0.
(7)
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Figure 3: Setup of a central laptop connecting four
receivers positioned on each end of a wooden bench
(red circles).

Table 2: Receiver Placement and Relative Distances
Rec. Side dC[m] dR1[m] dR2[m] dR3[m] dR4[m]

R1 East 7 - 8.06 13.00 9.90
R2 South 4 8.06 - 7.21 11.00
R3 West 6 13.00 7.21 - 9.22
R4 North 7 9.90 11.00 9.22 -

In order to evaluate the CDFs, we first need to determine
the parameters s and σ. However, the parameter estima-
tion for both distributions is a non-trivial problem in math-
ematical analysis. Therefore, we use the numeric solution
calculated by the distribution fitting function fitdist pro-
vided by MATLAB. Note that these error models are not
taking correlations into consideration. We therefore expect
distances to be more dense around the mean and that our
model is a pessimistic approximation.

4. ERROR FOR AUTHENTIC SIGNALS
In this section, we present a series of experiments we con-

ducted to obtain real-world GPS localization errors. The
experiments were executed with a set of co-located receivers,
which allows us to determine temporal and spatial correla-
tions between the localization errors. As a result, we were
able to identify suitable parameters for our spoofing detec-
tion mechanism.

4.1 Experimental Setup
For our experimental setup we deployed four standalone

Arduino UNOs, rev. 3. Each Arduino is extended with a
GPS logger shield including a GPS module in order to pro-
cess incoming GPS signals. Furthermore, an external active
antenna with an additional 28 dB gain is coupled with each
GPS shield. The external antenna not only provides more
stable solutions but also increases the flexibility of the setup
due to an additional 5m cable length. The combination of
these components is hereafter referred to as a receiver.

For the initial measurements, four receivers were arranged
in a cross-like formation with side lengths of approx. 4m
to 7m as depicted in Figure 3. Each receiver generates
NMEA 0183 data sentences from the received signals. The
data is constantly stored on a controlling laptop connected
via USB, which also powers the receivers. With a total of
four receivers, we obtain six distinct distances matching each
device with each other. For the specific relative distances we
refer to Table 2, in which dC is the distance to the center
(as measured by hand), and dRi is the calculated distance
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Figure 4: Illustration of the receiver placement in-
cluding reported positions, where ”X” indicates the
mean position over the measurement duration.

0 20 40 60 80 100 120 140
Measurement Duration [min]

0

1

2

3

Di
st

an
ce

fro
m

M
ea

n
[m

] R1 - : 0.9753 : 0.5192
R2 - : 1.3895 : 0.5684
R3 - : 1.6096 : 0.8724
R4 - : 0.7890 : 0.4120
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to the other receivers. The overall formation is aligned to
the cardinal directions North, South, East, and West; it is
illustrated in the position map shown in Figure 4, which was
set up for approx. 2.5 h at a place with clear line of sight to
the sky.

4.2 Measurement Analysis
We next evaluate the recorded data and derive suitable pa-

rameters for the subsequent simulations. The position map
indicates that the reported positions are scattered around
four points, which in our case closely reflect the actual re-
ceiver placement. However, the deviation from the interim
positions to the actual placement can reach several meters.
Figure 5 shows the development of these distances over the
course of the experiment. While the average distance er-
ror µ ranges from approx. 0.79m for R4 to 1.61m for R3,
the standard deviation σ varies between approx. 0.41m for
R4 and 0.87m for R3. In comparison to the values reported
in Table 1, the positions measured during the experiment
are very stable.

Since our spoofing detection mechanism takes the relative
distances into account, we calculate the distances between
the reported positions. The results including the average
distances µ are depicted in Figure 6. The histogram uses a
bin width of 1m. The average distances are all within 1m
from the actual distances noted in Table 2. In Section 3.4,
we concluded that the underlying distribution is Rician. We
try to align the respective PDF from (4) with the measure-
ments. The solid (red) line represents a normalized best fit
based on a Rician distribution. The gap between the theo-
retical distribution and the recorded data is mainly due to
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Figure 6: The distribution of calculated distances
between each pair of receivers, with fitted Rician
distributions.

Table 3: Error Distribution Parameters
Distance s σ d99[m] ρLAT ρLON

R1-R2 8.129 0.681 6.576 0.045 0.399
R1-R3 13.319 0.809 11.464 0.490 0.779
R1-R4 10.802 0.779 9.020 0.509 0.472
R2-R3 7.045 0.796 5.244 0.721 0.654
R2-R4 11.337 1.132 8.768 0.511 0.462
R3-R4 9.760 1.495 6.423 0.351 0.719

correlations of position errors (distances tend to be smaller)
and limitations of the measurement setup. In other setups,
we obtain results that fit the Rician distribution better (Ap-
pendix B). The parameters of the distributions are included
in Table 3. In particular, the noncentrality parameter s
closely reflects the average distance µ, whereas the scale pa-
rameter σ reflects the standard deviation of the dataset.

As an illustrative example, we focus on a single distance.
Considering the CDF of the Rician distribution from (5), we
are able to calculate the probability that a certain thresh-
old λ is exceeded. In particular, we can determine the point
at which 1% of the distribution is accumulated. According
to the CDF, we expect that 99% of the distances exceed this
fix point such that

Pr{d ≤ d99} = 1−Q1

(
s
σ
,
d99
σ

)
,

where d99 represents the distance that is shorter than 99% of
all distances. With this equation we can calculate thresholds
that belong to different probabilities. The distances corre-
sponding to the 99% threshold for each pair of co-located
receivers are shown in Table 3. For instance, the distance
R3-R4 (µ = 9.875m) is expected to be below 6.423m in only
1% of the cases and is calculated to be maintained 99% of
the times, which is approx. 3.4m less than the actual dis-
tance based on the initial measurements.

A further aspect of our measurement analysis is how posi-
tion changes correlate spatially. Since we assumed that the
system-intrinsic URE is an environment-dependent error, we
expect to detect a certain correlation between the position
deviations for co-located receivers. To identify the extent of
correlation, we compute Pearson’s correlation coefficient ρ

from (3) between the reported positions. The coefficients for
our measurements are listed in Table 3. For better clarity ρ
is partitioned in a latitude and a longitude component. We
recognize a positive correlation. Even though the amount
of correlation differs between the respective receivers due to
noise effects (ρLAT for R1-R2 is an outlier), the magnitude
of correlation is considerable and throughout positive.

Conclusion for Authentic Signals. In conclusion, the lo-
calization precision of the utilized COTS receivers is within
typical standard deviations of σ ≈ 0.5, . . . , 3. The correla-
tion between the position shifts is significantly positive and
stabilizes at ρ ≈ 0.4, . . . , 0.6 for long-term measurements.
To validate our findings, we conducted further experiments
in different environments between August 2015 and May
2016, which are discussed in Appendix B.

5. ERROR FOR SPOOFED SIGNALS
In the previous section, we investigated the localization

error for authentic signals. We now present experimental
results on the localization error for spoofed signals, using
the same receivers as in the previous experiment.

5.1 Experimental Setup
In our measurement setup, the spoofing attack is realized

via a GPS signal simulator that is capable of generating ar-
bitrary civilian GPS signals (LabSat 3). These signals can
be composed with attacker-chosen parameters such as sig-
nal power or position solution. With the supplied software
tools, we are able to generate scenarios, which emulate sim-
ilar conditions as were present during our measurements for
the authentic signals. In particular, the simulator uses the
ephemeris data for that specific place and time period.

Since the satellite simulator aggregates a mix of satellite
signals into a signal that is resolvable to one specific lo-
cation, we choose the coordinates of one of the receivers
from our initial measurements as the spoofed position. The
spoofing signal was sent wirelessly during limited time peri-
ods. Thus, all receivers obtained the same signal at similar
power levels. In order to imitate the authentic scenario as
closely as possible, we adapted the external antennas incli-
nation to the new angles-of-arrival due to the ground-level
simulator. A sophisticated attacker is assumed to send out
signals from higher positions avoiding the antenna adjust-
ments. During the (indoor) experiment, the receivers were
shielded from real GPS signals in order to acquire a quick
fix to the spoofing signals as well as to prevent signal leak-
ages to the outside. In less than one minute, the receivers
locked onto the spoofing signal and kept tuning to process
all available satellites from the signal. The spoofing attack
was performed with the same GPS time and for the same
duration as for the outdoor measurement.

5.2 Measurement Analysis
The analysis of the recorded measurements reveals the fol-

lowing insights. All receivers report positions, which closely
reflect the preconfigured location for which the GPS signals
were generated. Within the given precision, the mean of the
reported positions is the same for all receivers. Notably, this
is independent of the actual positioning or formation.

All four traces exhibit similar patterns over the course of
the experiment. Across all receivers, we can recognize peri-
ods in which the distance to the mean positions increases,
respectively decreases as shown in Figure 7. In these periods,
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Figure 7: The progression of the distance to the
respective mean reveals a close spatial correlation.

we assume that the simulator imitates the changing signal
quality at that location during that time by adjusting the
impact of system-intrinsic UREs. The average distance µ
from the means varies between approx. 0.47m for R4 and
0.57m for R3, whereas the standard deviation σ ranges from
approx. 0.21m for R4 to 0.29m for R3. In comparison to the
outdoor measurements, both quantities are roughly halved.
Thus, the reported positions are less affected by errors.

In consideration of the relative distances, the resulting dis-
tribution is depicted in Figure 8. To increase the resolution,
the applied bin width is refined to 0.1m. As analyzed in
Section 3.4, the distances follow a Rayleigh distribution, for
which the noncentrality parameter s becomes 0 due to over-
lapping center points. The solid (red) curve represents the
best fit on the basis of the respective PDF from (6). Note
again that, due to correlations between the position errors,
distances tend to be smaller than the distribution suggest.
Measurement limitations prevent a perfect fit with the dis-
tribution, see Table 4 for the determining scale factor σ.

According to Figure 8, the relations involving R4 feature
less distinct peaks such that the red curve drops slower to-
wards the right side. Taking the CDF of the Rayleigh dis-
tribution from (5) into consideration, we can determine the
probability that a certain threshold λ is exceeded. This can
be described as

Pr{d > d99} = e−
d99

2

2σ2 ,

where d99 is expected to be larger than 99% of the distances.
In contrast to the authentic measurements, the role of d99 is
swapped representing a threshold towards the upper limit.
For each receiver pair, the value of d99 is stated in Table 4.
Due to the very small deviations in the reported position
solution, the calculated thresholds are less than 1m. Even
for the most diversified distance R1-R4, the relative distance
exceeds approx. 0.655m in only 1% of the cases.

Finally, we evaluate the correlation between position de-
viations on the basis of the correlation coefficient. The cal-
culated coefficients for latitude and longitude directions are
included in Table 4. Across all receivers, the values illus-
trate a strong positive correlation with a minimal coefficient
of 0.870 for R1-R4 and a maximal coefficient of 0.986 for R2-
R3, both in latitude direction. Compared to the correlation
for the outdoor measurements, the correlation in the spoof-
ing scenario is constantly higher. Each receiver is faced with
the same GPS signals and thus the same embedded system-
intrinsic errors. Receiver-specific errors only take a minor
role, which is reflected by high coefficients close to 1.
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Figure 8: The distribution of relative distances un-
der spoofing.

Table 4: Error Distribution Parameters - Spoofing

Distance σ d99[m] ρLAT ρLON

R1-R2 0.126 0.381 0.970 0.932
R1-R3 0.137 0.416 0.975 0.916
R1-R4 0.216 0.655 0.870 0.898
R2-R3 0.092 0.279 0.986 0.969
R2-R4 0.160 0.487 0.932 0.964
R3-R4 0.181 0.550 0.927 0.959

Conclusion for Spoofed Signals. In conclusion, the re-
ceivers maintain a position accuracy of σ ≈ 0.2, . . . , 1. The
typical correlation coefficient for position shifts is strong pos-
itive in the range of ρ ≈ 0.5, . . . , 0.9. In comparison to the
performance for authentic signals, the position solutions are
more stable and the correlation is higher. Results from addi-
tional spoofing experiments investigating the impact of dif-
ferent environments are presented in Appendix B.

6. COUNTERMEASURE EVALUATION
We now use the noise parameter ranges learned from our

real-world experiments to instantiate the detection mecha-
nism and evaluate its performance through simulations.

6.1 Evaluation Metric
We developed a simulation framework using MATLAB in

order to calculate the expected performance of different re-
ceiver positioning. In addition, the framework finds optimal
decision thresholds λ with respect to corresponding detec-
tion probabilities pd and false alarm probabilities pfa.
Within the simulation framework, we pursue two goals:

(i) Simulate the countermeasure for m receivers (we focus on
m = 4) considering different distribution parameters includ-
ing distance, standard deviation, and correlation. (ii) Eval-
uate different instantiations of the function f , which is the
determining function in the decision mechanism (2). For the
analysis with m = 4 receivers we chose a normalized major-
ity voting, where longer distances (diagonal in a square) are
more significant. The reasoning behind the selection is given
in Appendix A.
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Table 5: Simulation Parameter Sets
Case σlegit ρlegit σspoof ρspoof

1 4 0.5 2 0.5
2 2 0.5 1 0.5
3 1 0.5 1 0.5
4 1 0.5 1 0.7
5 1 0.5 0.5 0.9

Based on real-world measurements, we consider five dif-
ferent error models representing different scenarios and mea-
surement environments, see Table 5. The first scenario con-
siders high noise from our worst case measurements (Case 1).
On the other hand, the fifth scenario includes the most sta-
ble position solutions that we measured (Case 5). The other
scenarios are intermediate steps between the two extremes
(Cases 2,3,4). Notably, the third scenario represents an error
model for which authentic and spoofing signals suffer from
the same extent of errors.

The simulation covers varying receiver distances given as
the radius r, which is step-wise increased from 0m to 15m
with a step size of 0.01m. The amount of generated mea-
surements is 10,000,000 for each receiver position and each
simulation run. The standard deviation is modeled by Gaus-
sian distributions and we use correlations between generated
datasets.

As the first measure of performance, we consider equal
error rates (EER), i. e.,

1− pd
!
= pfa. (8)

In other words, our decision threshold λ is chosen in such
a way that the probability of a false alarm pfa is equal to
the probability of a missed detection pd. However, we notice
that spoofing and non-spoofing scenarios are not equally dis-
tributed. In most cases, the receivers operate with authen-
tic signals, whereas an actual attack is very unlikely. False
alarms are generally more likely to occur than false detec-
tions and thus need to be weighted more than missed detec-
tions. The usage of the EER gives us a worst case estimation
with a stronger focus on reliable detection; the receivers dis-
tances may be decreased further if we allow poorer detection
probabilities. At the same time, missed detections typically
incur a larger security risk than false detections. To ac-
count for these considerations, we later additionally report
results individually for the probabilities of false alarms pfa
and missed detection pd.

6.2 Simulation of the Countermeasure
We examine the detection performance of our detection

mechanism for m = 4 receivers. The results under consid-
eration of the noise scenarios from Table 5 are depicted in
Figure 9. The required receiver distances differ substantially
for each of the simulated cases. For example, a radius of ap-
prox. 11m is needed for an EER of 10−6 in the worst mea-
sured scenario (Case 1). An EER of 10−6 equals only one
triggered alarm on a sample size of 1,000,000 measurements
under normal operation, whereas only one instance of spoof-
ing remains undetected. For our best noise model the re-
quired radius is reduced to approx. 2m (Case 5). The radii
for the other scenarios vary from approx. 6m (Case 2), and
approx. 4m (Case 3), to approx. 3.5m (Case 4).
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Figure 9: EER for different radii (m = 4).
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Figure 10: Detection performance (m = 4): without
considering our proposed improvements (top left),
considering correlation (top right), lower standard
deviation under spoofing (bottom left), and the com-
bination of both (bottom right).

To integrate our results with theoretic prior work [26–28],
we take σ = 4 (assumed by Swaszek et al. [27]) as a starting
point to show the effect of our measurement-based improve-
ments. Note that the official performance standard [30] only
gives typical ranges for the standard deviation from σ ≈ 1
to σ ≈ 8. Figure 10 shows the performance improvements
as we introduce our assumptions. The top left curves are
generated with a standard deviation of σ = 4 and a corre-
lation of ρ = 0.5 between position changes for both normal
operation and spoofing. A more realistic assumption on the
standard deviation is introduced in the bottom left figure,
where we keep σlegit = 4 and change σspoof = 1 emulating
the reduced position shifts under spoofing. At the top right
corner, we introduce the effect of higher correlation during a
spoofing attack by adjusting ρspoof = 0.9. The bottom right
figure combines both effects, i. e., σlegit = 4, σspoof = 1,
ρlegit = 0.5, and ρspoof = 0.9.
In particular, the (red) dashed line in Figure 10 represents

the resulting false alarm rate as a function of the radius
by fixing the detection probability to pd = 0.99. Without
considering reduced error characteristics under spoofing, we
obtain pfa = 10−5 for a radius of approx. 12.31m. Using
our derived parameter set, the required radius is reduced to
approx. 3.63m for the same false alarm rate. The resulting
square has edges of length approx. 5.13m.
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Figure 11: The outdoor measurement environment
for our GPS spoofing detection prototype.

Summary of Results. We conclude that our proposed im-
provements reduce the required area for the countermeasure
from 200m2 in [27] to approx. (5.13m)2 ≈ 26.32m2, which
is almost an order of magnitude smaller (square area). For
this comparison, we picked the same UERE values as in [27].
If we use the UERE we measured in our experiments instead,
the performance would be increased even further.

7. PROTOTYPE IMPLEMENTATION
To demonstrate the applicability of our proposed multi-

receiver spoofing detection mechanism, we developed a pro-
totype implementation. We deployed an experimental setup
with m = 4 receivers positioned in a square with edge length
d = 5.00m, which is equivalent to a circle with r ≈ 3.54m.
Two receivers are placed in close vicinity to a metal wall
introducing signal shielding and additional multipath com-
ponents. Figure 11 shows the measurement environment
(the metallic wall is close to the right hand side).

We tested this formation in two different environments:
(i) We recorded measurements under authentic conditions,
see Figure 11. (ii) We targeted the same formation with an
indoor spoofing attack. Notably, we used the indoor setup to
prevent—in particular illegal—interference with surround-
ing devices. We captured data for spoofing and normal op-
eration for close to three hours. For this specific setup we
utilized the normalized majority voting approach for the re-
ceiver distance analysis. The threshold, which is represented
by the horizontal line, is an estimation that optimizes both
the detection and the false alarm probability.

Within the entire measurement period, we encountered no
false alarms while under spoofing our countermeasure de-
tected the spoofing attack reliably as depicted in Figure 12.
More than 80,000 GPS measurements were recorded during
the experiments. The normalized majority distance for the
authentic measurements is constantly above the threshold,
whereas in the spoofing case it is always below. If any of the
measurements cross the threshold line, either a false alarm or
a missed spoofing would occur. A sliding-window approach
could compensate single threshold under- or overcuts.

Summary. With our prototype implementation we have
demonstrated that the detection mechanism is applicable
to m = 4 receivers positioned in a square of edge length
d = 5.00m or a circle with radius r ≈ 3.54m. For the
duration of the experiment we encountered no false alarms
and no missed spoofing events.
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Figure 12: The normalized majority relative dis-
tance for authentic GPS signals (top) and under
spoofing (bottom). The horizontal line represents
an estimation for the threshold λ.

Outlook on Future Work. This investigation of multi-
receiver GPS spoofing detection leaves promising studies for
future work. Before the countermeasure is deployed on a
larger scale, more investigations regarding the stability of
GPS errors and their correlation for different locations, en-
vironmental conditions, and time intervals are desirable. Re-
cently, Pesyna et al. [19] presented the potentiality of cen-
timeter positioning, which would greatly improve our detec-
tion performance. Our investigations provide an evaluation
framework that facilitates extended measurements and eval-
uations. We leave the evaluation of overlapping legitimate
and spoofing signals for future work.

8. MULTI-ANTENNA ATTACKER
We now discuss the multi-antenna attacker with respect to

our GPS spoofing countermeasure. To the best of our knowl-
edge, this type of attacker has only been proposed theoret-
ically [29]; practical realizations do not exist in the public
literature. Implementing and realizing this multi-antenna
attacker is challenging as we will explain in the following.
Comprehensive results as well as extensive descriptions and
evaluations are beyond the scope of this paper.

The multi-antenna attacker utilizes (at least) four anten-
nas each sending out a different satellite signal. These sig-
nals arrive at the receivers as individual signals with certain
attacker-chosen time offsets. If chosen properly, the signals
can be resolved to a position that is determined by the ac-
tual satellite positions included in the ephemeris data and
the corresponding ToA. Per receiver, this is identical to what
a single-antenna attacker would achieve. However, if we po-
sition the antennas such that the ToA at an adjacent receiver
can be correctly resolved to a position that is a configurable
distance apart, we can realize a distance-preserving multi-
antenna attack.

Our test setup uses two receivers and four USRPs N210 [3]
each transmitting a GPS satellite signal realizing an attacker
with four antennas. The signal samples were generated using
the software project gps-sdr-sim [4] and are synchronized
using a control laptop. In order to spoof a single receiver, the
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four USRPs are positioned equidistantly around the targeted
receiver. The correct ToA (as under normal operation) is
already considered during the signal generation. When we
extend the countermeasure to m = 2 receivers, we need
to rearrange the antennas such that the relative ToA for
both receivers corresponds to the actual relative ToA for
that specific time frame.

For instance, for a co-located receiver at a distance of
5m the differences in the pseudoranges are in the range of
−5m to +5m. Consequently, the antennas need to be moved
based on the second receiver position and the emitted satel-
lite signal. Additionally, the setup needs to be adapted to
the current ephemeris data and spoofed GPS time since dif-
ferences in the pseudoranges change over time.

Implementation Challenges. Under normal operation,
GPS signals have roughly the same signal power. For the
single receiver with equidistant senders we achieved a GPS
lock by using four separated signal sources. However, when
we rearrange the antennas to simultaneously fulfill the ToA
at an adjacent receiver, the distances to the second receiver
now varies from 0.5m to 7m in contrast to 5m to the first
receiver. This results in substantially different power levels
which leads to a very unstable lock. Unfortunately, for a
realistic attacker that is located, e. g., at a distance of about
100m from the receivers, however, the differences in power
levels are getting less and less since the relative differences
shrink as well.

Our Countermeasure. For settings with m ≥ 4 receivers,
a multi-antenna attack (with the attacker trying to adjust
the ToAs) cannot preserve the relative distances of all re-
ceivers [29]. As a result, our proposed multi-receiver coun-
termeasure with four receivers is expected to be resilient
against multi-antenna attacks by design. With our limited
multi-antenna attacker implementation, we were only able
to spoof single receivers, and even our most basic counter-
measure with m = 2 is already complicating the attack sig-
nificantly.

9. RELATED WORK
First experimental work on the topic of GPS spoofing was

published by Warner et al. [32, 33]. The authors demon-
strated that GPS spoofing attacks were feasible using a GPS
satellite simulator. They proposed countermeasures mostly
based on signal strength differences for spoofed signals.

A rich set of related work on GPS spoofing was published
by Humphreys et al. [7, 10, 13, 20, 21]. In [7], a spoofer was
constructed that would use legitimate GPS signals to obtain
correct GPS data, and then re-transmit this data with se-
lectively applied time offsets, causing the victim’s receiver
to compute a wrong location. In [13], physical-layer signal
characteristics such as phase shifts between two antennas
were used to detect ongoing spoofing attacks. This counter-
measure required a custom two-antenna receiver setup.

In [24], Scott proposed changes to the GPS signals to in-
troduce data-level authentication based on a public-key in-
frastructure. Another authentication signal-based scheme
was proposed in [11]. In [20], the (encrypted) military GPS
signal was used to authenticate the civilian signal received
at the same time. In [10], a practical GPS spoofing attack
on a UAV was conducted.

Spoofing detection based on different signal characteris-
tics (e. g., angle-of-arrival, signal power, etc.) was discussed

in [2,16,17]. In contrast to these detection schemes focusing
on physical-layer characteristics, we focus on the navigation
message information itself. In other words, instead of using
pseudoranges [23] we use the position solution for our coun-
termeasure, which is easy to obtain, process, and store on a
high abstraction level.

The multi-receiver countermeasure was analyzed theoret-
ically in [5, 26–28]. The authors of [5] derived performance
values for mutual distances of 20m achieving a false rejection
rate of less than 0.1 and a false detection rate of 0.01 (loca-
tion noise σ = 5m). Therefore, the countermeasure seems
hardly applicable to most moving vehicles, but instead only
suited toward large stationary installations. Swaszek et al.
theoretically investigated the countermeasure, using statisti-
cal models [26,28] extended by bias in the 2D noise distribu-
tion of the localization result [27]. For a four-receiver coun-
termeasure, they suggest that a square setup with 14m edge
distance would achieve a false acceptance rate of ≈ 10−5 and
a detection rate of ≈ 0.99 (location noise σ = 4m). Such a
formation would require an area of 200m2.
Other recent works consider GPS spoofing attacks on the

time and phase synchronization in smart power grids [9,34].
In [34], the authors propose to use a set of modified static
GPS receivers with tight time synchronization to determine
the exact time of arrival of spoofed signals at each locations
with 1 ns precision. Based on that information, multilatera-
tion can be used to locate the attacker.

10. CONCLUSION
In this work, we thoroughly investigated a multi-receiver-

based GPS spoofing detection technique and performed its
first practical implementation. We started by revising the
underlying assumptions of previous theoretical work, in par-
ticular the error models, and proposed that there is a cor-
relation between errors at co-located receiver positions. We
experimentally validated that the predicted error correlation
is present in authentic signal scenarios, as well as under a
spoofing attack. By leveraging the correlated noise of co-
located receivers, we were able to lower the false acceptance
rate of the countermeasure, while preserving the sensitivity
to attacks.

As result, a formation covering an area of 26m2 is suf-
ficient (for a detection rate of 99% and a false detection
rate of approx. 10−5), in contrast to the previously proposed
200m2 [27] or even larger area in [5]. We realized the first
multi-receiver-based GPS spoofing detection system based
on low-cost COTS devices. Using that implementation, we
were able to validate our theoretical findings through a range
of experiments using single-antenna and multi-antenna at-
tackers. For an experiment over the course of roughly 3 h,
we observed no false positive or false negatives.

For future work, promising avenues based on our exper-
imental measurements include further reductions of the re-
quired distance between receivers (e. g., in scenarios with
rather stable signals due to direct line-of-sight) or due to re-
ceiver dynamics. Additionally, the detection threshold could
be subject to dynamic adaptation.
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Bobba, W. H. Sanders, and G. X. Gao. Reliable
GPS-Based Timing for Power Systems: A
Multi-Layered Multi-Receiver Architecture. In Power
and Energy Conference at Illinois, PECI ’14. IEEE,
Feb. 2014.

[6] B. Hofmann-Wellenhof, H. Lichtenegger, and
J. Collins. Global Positioning System: Theory and
Practice. Springer, 5th edition, 2001.

[7] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W.
O’Hanlon, and P. M. Kintner Jr. Assessing the
Spoofing Threat: Development of a Portable GPS
Civilian Spoofer. In International Technical Meeting of
the Satellite Division of The Institute of Navigation,
ION GNSS ’08, pages 2314–2325, Savannah, GA,
USA, Sept. 2008.

[8] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and
G. Lachapelle. GPS Vulnerability to Spoofing Threats
and a Review of Antispoofing Techniques.
International Journal of Navigation and Observation,
2012, May 2012.

[9] X. Jiang, J. Zhang, B. J. Harding, J. J. Makela, and
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APPENDIX
A. SELECTION OF FUNCTION F
We consider four different functions, which represent a

minimal, maximal, majority, and normalized approach. The
minimal and the maximal functions only consider the mini-
mal, respectively the maximal, measured distance from the
set of all distances. The majority approach performs a type
of voting mechanism which decides for spoofing when the
majority of distances, i. e., four out of six, fall below the
decision threshold. The normalized approach makes some
distances more significant than others, e. g., the diagonal in
a square is

√
2 times longer than the edges and then per-

forms a majority voting.
For m = 4 receivers there are six distances in total. We

evaluate the detection performance of different instantia-
tions of the function f , which operate on the distances. Ex-
emplary, we present results considering the error model with
the same error distributions for spoofing and non-spoofing
conditions (Case 3). We are able to identify the best choice
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Figure 13: EER for different radii considering dif-
ferent functions f (m = 4) (Case 3).

Table 6: Function f Performance (Lower is Better)

Function f Relation 1 Relation 2 Relation 3

Minimal ≥ 7 ≥ 9 ≥ 10
Maximal 1.0000 1.2049 1.2344
Majority 0.8457 1.0000 1.0224

Normalized 0.8320 0.9820 1.0000

for the function f for this specific model and give hints to-
wards the impact of changing error models.

Figure 13 compares performance values for the chosen
types of the function f , i. e., minimal, maximal, majority,
and normalized. As one can see, the choice of a minimal
function offers the worst performance from the analyzed set.
The other three types, namely maximal, majority, and nor-
malized, all perform pretty similar.

In order to quantitatively compare the performances, we
compute the relative difference in EER over all radii and
average it by means of normalizing the results. Results are
given in Table 6. We can state that the normalized approach
performs approx. 2% better than the (non-normalized) ma-
jority voting and approx. 17% better than the maximal func-
tion. The majority function has an approx. 15% better aver-
age performance than the maximal function. In conclusion,
the normalized approach is the best choice for the selected
error model.

We also conducted simulations for the other error mod-
els with similar results. For the scenarios with more stable
and more correlated signals, we notice that the differences of
maximal, majority, and normalized functions is decreasing
and eventually the maximal distance performs as good as the
others within negligible margins. The usage of the maximal
distance can be beneficial for setups with restricted compu-
tational resources since this function requires less compar-
isons. Nevertheless, the (normalized) majority voting ap-
proach is the optimal choice for all considered error models.

B. FURTHER MEASUREMENTS
We conducted further measurements between August 2015

and May 2016 to confirm our error modeling approach in
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Figure 14: Distribution of distances from a three-
day measurement with m = 4 receivers and a bin
width of 0.2m.

different environments. For instance, receivers were placed
close to metallic walls or near other noise sources. Over
different time periods (up to three days non-stop) measure-
ments were collected to assess the effects of signal reflections
and changing meteorological conditions. For the sake of clar-
ity, we only present resulting parameters for the standard
deviation and the correlation here.

Authentic. For receivers with clear line-of-sight, but un-
der multipath effects, we experienced typical position noise
in the range of σ ≈ 0.746 to σ ≈ 3.063, where the latter was
measured close to a reflecting metallic wall. Similar degra-
dations can be observed for the correlation between position
changes. Additional noise sources can decrease the correla-
tion to ρ ≈ 0.265 for direct wall reflections. However, corre-
lations of ρ ≈ 0.820 were still measured for receivers affected
by multipath signal components but with clear line-of-sight.

Spoofed. For our spoofing experiments we also varied the
antenna inclination due to the different angle-of-arrival of
spoofing signals due to a ground level satellite simulator.
We tried establish similar power levels at the receiver to im-
itate conditions under normal operation. In all our experi-
ments, the spoofer was in close vicinity to the receivers. We
obtained the following typical results for the standard de-
viation and the correlation. For unfavorable environments,
the individual receiver’s position inaccuracy can increase to
σ ≈ 0.882 under spoofing. The correlation coefficients across
several measurements maintained a comparably high level of
ρ ≈ 0.981 to ρ ≈ 0.463 in a worst case scenario.

3-day Experiment. This experiment was run over the
course of three days with m = 4 receivers and changing
weather conditions. Over 1,000,000 data points for each re-
ceiver were recorded. Figure 14 shows a histogram of all
relative distances. We note that the real distances between
the receivers were relatively small to shelter the devices from
rain. Outliers are still visible and could be caused by chang-
ing temperature and weather conditions.
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