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Abstract

Ensuring the integrity of embedded programmable logic con-
trollers (PLCs) is critical for the safe operation of industrial
control systems. In particular, a cyber-attack could manipu-
late control logic running on the PLCs to bring the process
of safety-critical application into unsafe states. Unfortunately,
PLCs are typically not equipped with hardware support that
allows the use of techniques such as remote attestation to ver-
ify the integrity of the logic code. In addition, so far remote
attestation is not able to verify the integrity of the physical
process controlled by the PLC.

In this work, we present PAtt, a system that combines re-
mote software attestation with control process validation. PAtt
leverages operation permutations—subtle changes in the op-
eration sequences based on integrity measurements—which
do not affect the physical process but yield unique traces of
sensor readings during execution. By encoding integrity mea-
surements of the PLC’s memory state (software and data) into
its control operation, our system allows us to remotely verify
the integrity of the control logic based on the resulting sensor
traces. We implement the proposed system on a real PLC,
controlling a robot arm, and demonstrate its feasibility. Our
implementation enables the detection of attackers that ma-
nipulate the PLC logic to change process state and/or report
spoofed sensor readings (with an accuracy of 97% against
tested attacks).

1 Introduction

Industrial control systems (ICS) are a class of cyber-physical
systems (CPS) that typically consist of industrial controllers
sensing and actuating safety-critical applications, e.g., the
power grid, water treatment plants, and factory automa-
tion [58]. In particular, ICS typically consist of programmable
logic controllers (PLCs), which are embedded systems that
act as a reliable and re-programmable cyber-physical interface
between a monitoring entity, i.e., the Supervisory Control and
Data Acquisition (SCADA) center, and field-level devices,

i.e., sensors and actuators that interface directly with the phys-
ical environment. As such, the security of these controllers is
critical for ensuring the safe operation of the ICS [40].

Because of the safety-critical nature of PLCs, they have
been typically targeted by nation-state malware, such as the in-
famous Stuxnet worm [18] against uranium enrichment facili-
ties in Iran and the BlackEnergy crimeware [17] that targeted
Ukrainian electric power and train railway systems [14, 47].
These attacks typically target the application-layer software,
so-called control logic, due to the lack of security features
in legacy industrial protocols. Although it has been shown
that attackers can implement firmware-level attacks [6, 20],
these attacks have been shown to be much more challenging
to implement as they require a much more concerted effort
for stealthiness.

Although these attacks are understood, they are challenging
to defend against as security solutions need to be employed
for legacy systems with fixed hardware. Currently, PLCs do
not have hardware support to provide a hardware root-of-trust.
Physical Unclonable Functions (PUFs) have been proposed in
the past to enable software attestation for resource-constrained
devices, but such modules are also not yet available for indus-
trial devices. Existing integrity checks in industrial devices
are limited to checksums that are preloaded onto the device
when the program is initially loaded. In prior works, several
solutions have been presented to either test the code that is
being loaded onto the device [41] or verify the cyber and
physical behavior of the overall CPS [2, 21, 22, 60]. However,
these solutions treat the PLCs as black boxes and are not able
to monitor the internal states at run-time. We conclude that
a comprehensive solution to enable remote attestation of the
logic running on a PLC is missing.

In this paper, we present PAtt, a remote attestation tech-
nique that combines software remote attestation with a physi-
cal PUF to attest the control-logic code is running on PLCs
without trusted hardware. PAtt allows a verifier to challenge
a PLC to generate an attestation report in the form of sensor
values which are affected by a series of actuation commands
(based on the challenge and checksums over the PLC logic).
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The verifier can then attest the logic code integrity based on
the measurement of the PLC memory, as well as the authen-
ticity of the reply through the sensor values (similar to a PUF).
In particular, we also show that PAtt can detect attempts of the
attacker to replay the sensor readings with an accuracy of 97%.
PAtt detects those manipulations based on an anomaly detec-
tor that is trained with data resulting from normal operation
and does not need to be trained with prior attack examples.
Contributions. We summarize our contributions as follows.

• We present PAtt, a novel remote attestation technique
for PLCs that combines software remote attestation with
a PUF-like use of the physical process to attest the soft-
ware and process state of the PLC.

• We theoretically investigate the performance of the pro-
posed system and show that it is resilient against replay
attacks which provide the sensor reading from a sensor
record table. PAtt does not need to have prior knowl-
edge of possible attacks, and it only requires the normal
operational data during the training phase of the detector.

• We then implement and practically evaluate PAtt on a
real ICS—a robotic arm in the context of a safety-critical
process—and show that PAtt can detect the tested attacks
with an accuracy of 97%.

The rest of the paper is structured as follows. First, we
provide a background on previous techniques in remote attes-
tation for CPS in Section 2. We describe the system model and
design of PAtt in Section 3. Details on our implementation
are provided in Section 4. We present our evaluation results
in Section 5. We discuss the applicability of PAtt in Section 6
and we summarize related work in Section 7. Finally, we
conclude in Section 8.

2 Background

In this section, we first provide an introduction to pro-
grammable logic controllers (PLCs) in the context of cyber-
physical industrial control systems (ICS) as well as their se-
curity limitations. We then provide background on previous
works in attestation of cyber-physical systems.
Industrial Control Systems. Modern industrial control sys-
tems consist of three major levels [29]:

• Supervisory Control And Data Acquisition (SCADA):
this level of the ICS is mainly used for the control and
monitoring of industrial process that may consist of large-
scale geographical distributed computers. Five major
components of the SCADA are the human-machine in-
terface (HMI), data acquisition server, historian, engineer
workstations, and remote workstation.

• Programmable Logic Controllers (PLC): The local con-
trol component that is mostly designed for managing a

single process in ICS. PLCs are industrial computers
that are developed for handling the process level devices
like sensors and actuators.

• Fieldbus: The physical elements like sensors and actua-
tors are connected to the PLC at this level. Most of the
recent Fieldbus implementations use the Device Level
Ring (DLR) with two redundant PLCs and a ring topol-
ogy between those PLCs and physical elements.

In cyber-physical systems, the term Programmable Logic
Controller refers to computing devices, which control the
industrial appliances. Each PLC consists of (1) computing
modules, which are designed to perform industrial processes
reliably, (2) input modules translating analog physical inputs
to digital values, and (3) outputs modules, which map the
PLC’s digital outputs to analog physical outputs.

In a PLC, the next system state is computed based on the
current state measured by the input and output modules. The
main part of the logic executed on a PLC (control logic) is
programmed in special-purpose industrial languages, e.g., lad-
der logic, designed to guarantee a reliable transfer between
system states [9]. Control logic is compiled at a SCADA
server and downloaded to the PLC. The PLC runs this pro-
gram to perform a control task by processing a set of inputs,
received from physical sensors, and generating outputs to
be interpreted by actuators. Control logic runs on top of a
privileged software layer, e.g., a real-time operating system
(RTOS), which provides the required services. The control
logic consists of function blocks, data blocks, and organiza-
tion blocks. Function blocks contain reusable functions and
data blocks include data structures holding global or local
variables used in the control logic. Organization blocks serve
as the entry point of a PLC program and execute in a fixed
time interval, known as scan cycles.

Remote Attestation. Remote attestation is a technique,
which provides an external verifier with proofs on the in-
tegrity of a system’s software state. It is termed software-
based attestation when the proof of integrity is generated
with no hardware aid. This form of attestation is based on
strong assumptions regarding the time and the authenticity
of the communication channel between the system and the
external verifier [3, 49]. The limitations of software-based
attestation can be overcome by using trusted hardware. A
software, protected by trusted hardware, could measure the
systems software stack and authenticate the measurement us-
ing a secret key which is likewise protected by the trusted
hardware. Attestation techniques can be used together with
other security solutions like Transport Layer Security (TLS)
to prevent eavesdropping and Man-in-the-Middle scenarios.

Physically Unclonable Functions. Physically Unclonable
Functions (PUFs) are like a physical fingerprint used in semi-
conductors to generate key information with a level of ran-
domness from a complex physical system [27]. PUFs leverage
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Figure 1: Overview of steps in PAtt framework.

unpredictable physical variations that occur naturally during
semiconductor manufacturing. PUFs are used together with
hash functions in many cryptographic applications [32, 50].
The latest versions of PUFs are equipped in integrated cir-
cuits and used in different security applications like software
licensing. Recent industrial control systems do not include
PUF-based integrated circuits inside the PLCs. However, there
are some proposals to use the physical process as a PUF [62].

3 PAtt: Physics-based Attestation

PAtt is designed to allow remote attestation of logic code
running on a PLC without a traditional trust anchor (such as a
TPM or PUF). The devices that we target—PLCs in existing
and legacy systems—are not usually equipped with trusted
computing hardware to enable a hardware-based remote attes-
tation process. While recent versions of PLC firmware (e.g.,
in the Siemens S7 series) include APIs that can be used for
checksum generation over data blocks of control logic, the
challenge is to authenticate such measurements.

This motivates the novel concept of PAtt: sensor readings
from the physical process are used to authenticate the attes-
tation response. The software attestation result is tied to the
physical process readings through a derivation of an actuation
path from the cryptographic hash of the control logic. We now
introduce the system and attacker model and then provide an
overview of the proposed system.

3.1 System and Attacker Model

The industrial control system considered in this work consists
of a PLC that is controlling a dynamic local physical process
such as a robotic arm, a laser, or extruder. The control logic
of the PLC is responsible for real-time sensing and actuation
of the dynamic process, e.g., periodic transport of a manufac-
turing component from one position to another position. The
PLC does not provide onboard support for trusted execution
or cryptographic signatures. Instead, the PLC does provide
the capability to compute cryptographic hash functions over
one or more data blocks used by the control logic (e.g., as
possible on the Siemens S7 series PLCs). A remote attestation

server (the "verifier") is connected to the PLC over the local
network and is attempting to verify the correct state of the
system. Attacks that compromise the attestation server are
out of the scope of this work. The verifier has a model of the
physical processes that are trained during normal operation
in the absence of the attacker.

We consider an adversary that has compromised the PLC.
The attacker’s goal is to change the way the physical process
is actuated while hiding this compromise from the attestation
server. The attacker is limited to executing code on the com-
promised PLC, which has limited computational power and
memory. In particular, the attacker does not have additional
computation devices inside the industrial network. As the
attacker has compromised the PLC, attacks that would ma-
nipulate the PLC firmware is subsumed in our attacker model
(as the data could also be manipulated by the PLC firmware
when sent or received). We considered two types of attackers:

1. Hash approximation: This attack is designed for evalu-
ating decoding precision. In this attack, a number hash
bits will be flipped at a random offset of the hash.

2. Replay attack: In this attack, the attacker will replay a
stored sensor reading inside the PLC that corresponds to
a subset of the actual hash.

3.2 PAtt Framework

We now propose the Physics-based attestation (PAtt) frame-
work, which allows the attestation server (AS) to perform
remote attestation of the PLC’s currently loaded control logic.
Overview. The main steps of PAtt are summarized in Fig-

ure 1: 1) the AS initiates the attestation process by sending a
fresh challenge nonce over the network using industrial proto-
cols; 2) the PLC stores this nonce as data block in the memory
accessible to the logic code, and the PLC then computes a
cryptographic hash over the PLC logic code blocks including
the nonce; 3) the resulting hash is interpreted as an actuation
strategy for the robotic arm (details on this are provided later)
and the movement path is executed by the actuator; 4) the
resulting sensor readings during this movement are collected
(sent to the AS together with the hash), and the AS verifies
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that the hash was derived from correct PLC logic and the
nonce, and that the sensor measurements fit the specific phys-
ical process and hash. If the last step is successful, the AS
has attested the integrity of the logic on the PLC. In practice,
only a limited number of actuation can be executed within a
scan cycle of a PLC (e.g., 10ms), which might require us to
run multiple iterations (or rounds) of the protocol. We defer
discussion of that implementation detail to Section 4. We now
provide additional details on each step.

1) Attestation Request. The AS initiates the attestation re-
quest by sending the PLC a nonce (a randomly generated
bit vector) using the standard industrial protocols. The PLC
firmware receives the nonce and makes it available to the
PLC control logic as normal data tag. Figure 2 shows a more
detailed view of the interactions between the verifier, PLC,
and the physical process during the attestation process.

2) Nonce Storage and Hash Computation. The PLC then
computes a cryptographic hash function over a group of con-
trol logic objects (standard blocks, safety blocks, text lists,
and the received nonce from the verifier). If the hash function
is also able to cover the firmware memory space, that region
should be included in the hash as well. We note that in our
implementation, the specific PLC used is only able to cover
logic accessible memory areas, and thus not the RTOS.

3) Derivation of Actuation Strategy, and Execution of

Path. The cryptographic hash generated in the previous step
is then encoded to an actuation strategy for the actuator con-
trolled by the PLC. The intuition is that the execution of
such strategies will (deterministically) create sensor readings
unique for the physical process. To not impede on normal
process operations, the actuation strategy should essentially
represent an alternative way to reaching the normal opera-
tional goal of the process, without violating safety constraints.
Additional details on the derivation of the actuation strategy
are provided in the following subsections.

4) Verification of Hash and Measurements. Each physical
process is unique, which will be reflected in a process-specific
noise signal in all reported sensor values. In PAtt, the verifier
knows the unique noise signature of all prover devices and
can, therefore, identify all PLCs and the connected physical
systems based on the sensor readings transmitted during at-
testation, i.e., the attested PLC is authenticated in the process
through the reported sensor values. This noise includes any
source of random noise e.g., the noise of the system, manu-
facturing imperfections, and differences. This ensures that the
reported sensor values authenticate the attestation report. In
Section 3.4, we propose to use machine learning techniques
to compute the classifier prediction probability. Along with
decoding the hash, we use the classifier prediction probability
as a weight to compute the weighted distance between the
reconstructed hash and the original hash. We describe the
implementation details of the hash verification in Section 4.

Figure 2: Interaction sequence of the verifier, the prover, and
the physical system during attestation.

3.3 Generation of Actuation Strategy

We now discuss how the hash value of the logic-accessible
memory areas and the nonce can be interpreted as an actuation
strategy. In general, we assume that the cryptographic hash
has length m bits. Assuming that there are two different poten-
tial actuation actions (e.g., a move horizontally or vertically),
we interpret the hash as a sequence of those binary actuation
commands, with m commands being executed per iteration.
Figure 2 shows the interaction sequences of the verifier, PLC,
and the physical process during the remote attestation process.
We now provide additional details on individual commands
in the strategy (which we call micro-commands).

Macro-commands and Micro-commands. Macro-
commands are abstract movements to reach a goal from the
start. The macro-command can be executed by different
sequences of micro-commands (called a path strategy).
Consider the following example: a robot arm with three
stepper motors, which when actuated together will change the
arm hand position in the x, or y, or z directions. The designed
control logic of the robot arm will traverse the arm hand from
the position (x0,y0,z0) to the position (x1,y1,z1). We define
the macro-command as move from (x0,y0,z0) to the position
(x1,y1,z1). The coordinate system is scaled such that each
micro-command moves the arm by one unit (in particular, the
arm does not move diagonally).

Path Strategy. Continuing our example, the path strategy
now determines the sequence of micro-commands to execute
the macro-command. To simplify things, we only consider
micro-commands in direction x and y (and always use the
same z direction commands). The arm hand will start from
(x0,y0,z0) and takes x1 −x0 steps towards the x direction, and
y1 − y0 steps towards the y direction. Thus, the total number
of steps (or micro-commands) is (x1 − x0)+ (y1 − y0). The
order of micro-commands is defined by the path strategy.

We represent the path strategy as a binary vector (which
we call a coding), with a micro-command in x-axis direc-
tion represented by a 0 bit, a micro-command in y-axis direc-
tion represented by a 1 bit. For example, our robot arm goal
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might be to take five steps in the x direction and to take three
steps in the y direction. Two possible path strategies could
be 10100010, and 00000111. Figure 8 in Appendices 10.4
shows an example path strategy. We know that the number of
unique paths u in a x×y grid can be computed as follows [57]:

u =
(x+ y)!
(x!y!)

(1)

Thus, we can enumerate all possible paths, and use an
integer between 1 and u as an index to represent a specific
path strategy in a x× y grid. In PAtt, this index is a random
number resulting from the software attestation phase (i.e., the
resulting cryptographic hash is interpreted as integer). The
micro-commands of the chosen actuation strategy is then
executed, and sensor readings are recorded to be sent as part
of the attestation response.

3.4 Verification of the Measurement Traces

In the verification phase, the Verifier checks that the hash
received from the Prover was derived from correct PLC logic
and the nonce, and that the sensor measurements fit the spe-
cific physical process and hash. If the last step is successful,
the Verifier has attested the integrity of the logic on the PLC.
Hash verification. As the Verifier has access to the logic that
is supposed to run on the PLC (and the nonce), it is easy to
check if the hash is correct. In particular, the Verifier computes
the hash locally and compares with the received hash.
Replay Attack Detection. Next, the Verifier has to ensure
that the received sensor reading sequence fits the received
hash (which we call decoding) and that the sensor reading
sequence was not spoofed (e.g., by simulation of the physical
process or replay attack). The decoding process is designed to
translate the sensor readings to the original hashes considering
the physical behavior of the system and its non-deterministic
noise. The features available are the actual sensor reading
traces and information on the physical process (e.g., statistical
properties of noise from the sensors) that were measured
during the setup phase of the system. The decoding can be
done by signal processing techniques (e.g., matched filters that
detect movements and reconstruct the actuation strategy/hash),
or machine learning approaches. The detection of replayed
sensor traces can similarly be performed by statistical analysis,
signal processing techniques, or machine learning.

3.5 Security Analysis

As the hash received is a result of weak software-based attes-
tation, the verifier also needs to check if the hash was received
within a specific time window. In particular, we need to pre-
vent a compromised PLC from sharing the received challenge
with a third party oracle that would provide the correct hash.
As PLCs are only able to send and received messages synchro-
nized with scan cycles, we use two scan cycles as a maximal

Figure 3: Overview of the validation process in the Verifier.

delay to provide the hash (in the first scan cycle, a challenge
is received, and in the second the hash is computed and sent
to the Verifier). In our implementation, scan cycles are 10ms
long, so the maximal delay to provide the hash is 20ms.

Full replays of earlier actuation sequences are not feasible
for the attacker, as she would need to eavesdrop and store a
significant share of the hash space (i.e., actuation space and
its corresponding sensor readings) in order to reliably be able
to perform the replay attack. As the hash contains a fresh
nonce, and the hash itself has 256-bit length, we consider this
infeasible. As an example, a SIEMENS S7-1200 PLC might
have work memory up to 125 Kilobytes, and load memory up
to 4 Megabytes. A single trace of sensor readings of a single
SHA-256 hash will require more than 300 Kilobytes, hence,
storing the possible hashes inside the PLC is infeasible. As we
will show in Section 5, in practice our decoding solution was
able to detect attacks that could be produced on constrained
devices such as PLCs, so there we are able to do both decoding
and spoofing detection in one step.

4 Implementation

In this section, we provide details on our practical implemen-
tation of PAtt in an ICS use-case. We start by presenting our
solution for hash verification and spoofing detection. Then,
we present the ICS setup in which we evaluated PAtt.

4.1 Machine Learning Decoder

In our implementation, we chose to use (supervised) ma-
chine learning based approaches to both decode the sen-
sor reading traces to the hash and detect spoofing of sen-
sor reading traces. In Figure 3, we provide an overview
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of the data processing at the verifier, including the of-
fline training phase. The classifier decodes each individual
micro-command from the sensor reading trace to its corre-
sponding bit (or step) in the actuation strategy. To select
an appropriate classifier, we implemented and evaluated a
number of classifiers using WEKA [23]. In particular, we
tested Random Forests [11], Multilayer Perceptrons [7], De-
cision Forests [25], FURIA [26], DTNB [24] NBTree [31],
LMT [34], J48 [48], PART [19], and REPTree [63]. To bench-
mark the machine learning model used in our verifier, we have
evaluated a set of classifiers that are mostly used in related
security research works e.g. [4, 5, 45, 51, 56] as shown in Ap-
pendix 5.2. Now we thoroughly discuss different parts of the
PAtt as presented in Figure 3.

1) Training. The features that we used are trajectory position
of the arm, average movement over a window of time, and sta-
tistical features that are mostly used in the signal processing
to monitor the signal behavior. These statistical features are
the mean of the signal over a window of time and the standard
deviation of the signal. We applied the preprocessing of the
signals that were reported by the sensor, and we use those
features to recover the hash with a probability of prediction of
the classifiers. We used the current position, the mean (AVG)
and standard deviation (STD) of the Accelerometer and Gyro-
scope, and the change of mean of Accelerometer as features
to create the profile of the physical system (see Table 1). Con-
sidering the three-dimensional trajectory of the robotic arm
and two Accelerometers and two Gyroscopes, we used 33
features to train the machine learning model, and SciPy and
NumPy libraries of Python [12] to automatically generate
these features. In total, feature extraction was roughly 300
lines of code.

Table 1: The features classes used in PAtt.

Feature Formula

Current Position (xA,yA,zA)
Mean of Accelometer AVGt(xA,yA,zA)
STD of Accelometer STDt(xA,yA,zA)

Accelometer Difference AVGt −AVGt−1
Mean of Gyroscope AVGt(xG,yG,zG)
STD of Gyroscope STDt(xG,yG,zG)

2) Classification. The classifiers assign a class to the test data
set with a probabilistic model. Considering the sample set X ,
and class labels form a finite set Y , the classifier would assign
a conditional distribution Pr(Y |X) which for a given sample
x ∈ X , the classifier would assign a probability of being in
y ∈ Y class. Depending on the classification method, in hard
classification, the sample x ∈ X will be classified as y ∈ Y
class, where it holds:

ŷ = argmaxy Pr(Y = y|X) (2)

We use the highest classifier prediction probability of de-
coding a bit as a weight in the weighted distance computation.
3) Detection. In PAtt, the Prover generates a hash from the
random nonce and memory block. Then it creates the actu-
ation strategy based on the derived hash, and the physical
system performs the actuation strategy and reports the sen-
sor reading traces to the Prover. After decoding this hash
(described above), the Verifier needs to decide whether it is
authentic, for which we propose to use a weighted Hamming
distance. To compute the weighted distance of the original
hash and the recovered hash, we used the weighted Hamming
distance with the classifier prediction probability as a weight
of each bit of the hash. The Hamming distance is the number
of non-matching positions between two equal-length string.
Considering a noisy channel of transmitting bit arrays, the
Hamming distance could be used to determine how many bits
are different from the original bit arrays. In this paper, we
used the Hamming distance to calculate the distance between
the original hash and the decoded hash transmitted by actua-
tion commands to the physical process and retrieved from the
physical process by sensor readings. The Hamming distance
between two-bit arrays of a[1..k] and b[1..k] is computed by:

Ham(a,b) =
k

∑
i=1

ai ⊕bi (3)

We use the weight of specific bits in the distance computa-
tion of the Hamming distance. The PAtt is using the classifier
prediction probability as the weight for each bit of the hash.
The weighted Hamming distance between two bit arrays of
a[1..k] and b[1..k], and weight w[1..k] is computed by:

WHam(a,b) =
k

∑
i=1

wi(ai ⊕bi) (4)

The computed weighted Hamming distance over original
hash and the recovered hash will be:

WHam(Hash,Hash’) =
k

∑
i=1

CPri(Hashi ⊕Hash’i) (5)

where Hash is the original hash, Hash’ is the recovered
hash, i is the index of the bit, and CPri is the classifier pre-
diction probability of the ith bit. PAtt will trigger an alarm
when the computed weighted Hamming distance passes the
detection threshold (τ).

4.2 Testbed Design and Setup

In this section, we describe our industrial robot arm testbed
and our implementation of PAtt’s Prover on the PLC control-
ling the robot arm.
The PLC and Process. The industrial control system used in
this paper is a modern robotic arm controlled by a Siemens

170          22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association



Figure 4: Implemented setup.

S7-1200 PLC with a remote attestation server with at least one
GB storage, 16 GB memory, and an Intel Core i7 processor.
The PLC is programmed with the controller code for the
robotic arm. The verifier communicates with the PLC over an
industrial network and uses the SNAP7 library. The verifier
is written in Python, and has more than 3000 lines of code.

Our setup consists of a PLC-controlled Dobot robotic arm.
The arm includes a rotating base with two arm segments,
which we refer to as the rear and front arm segments respec-
tively. At the end of the front arm, the segment is an end-
effector, which can hold several different attachments, like a
gripper or 3D-printing extruder head. The arm is actuated by
three stepper motors, which we control via a Siemens S7-1200
PLC. Actuation is achieved through (i) a Pulse Width Mod-
ulation (PWM) Input/Output (IO) module for the PLC, and
(ii) one A4988 stepper driver per stepper motor to correctly
control the motor coils. Due to limitations in the amount of IO
pins available in our setup, we utilize only two stepper motors
in our implementation (see Figure 4). The PLC controls the
stepper drivers with PWM signals generated by our designed
function blocks of the PLC control logic that translate the
macro-commands to micro-commands, including the analog
conversion of the hash.

For sensing, the robotic arm uses an inertial measurement
unit (IMU) on both of its segments, with accelerometer and
gyroscope measurements collected during operation being
routed to the PLC via a combination of an Arduino MEGA
and MAX232 adapter, converting the accelerometers’ I2C
protocol to an RS232 module on the PLC.

On the PLC, we program the sensing-actuation control
loop. We implement the low-level arm kinematics, and point-
to-point movement functions adapted from the open-dobot
project [1] translated to the Siemens SCL language. To sim-
ulate an application-focused environment, we use python

scripts to allow for automated control and link them to the
PLC through the Snap7 communication library.

Function Blocks for Prover Functionality. To simplify the
usage of the proposed method, in practical industrial con-
trol systems we programmed the whole path strategy and
attestation functions inside the function blocks that could be
easily used by non-experts. The core idea of the PAtt is to
enable the remote attestation of a PLC’s control logic (or
the configuration data) without requiring changes to the PLC
hardware or the manufacturer provided firmware. In other
words, PAtt should be applicable to legacy systems by re-
compiling/extending only the operator provided control logic
programs of a PLC. We wrote 315 lines of code inside the
designed function blocks to compute the hash and perform
the actuation strategies. We used TIA 15 together with the
Python-Snap7 libraries at the verifier side to communicate
with the function blocks inside the PLC.

The attestation result, as soon as it is computed, will be
encoded into the commands the PLC sends to the connected
physical system as well as the verifier. The resulting sensor
readings that depend on the attestation report are forwarded
to the verifier. The verifier has a model of the physical system
and can calculate which series of sensor readings to expect
based on the actual functional commands, including the en-
coded attestation report.

Random Actuation Strategy. To implement the required
random actuation strategy, we designed a set of function
blocks to perform PAtt’s micro-commands inside the func-
tion block within the bounded timing of the needed abstract
macro-command by the process. As discussed before, the
completion of the micro-commands will lead to a physical
state as required by the macro-command. The random actua-
tion strategy was written directly inside the function blocks,
and it includes three function blocks and in total, 214 lines
of codes inside the ladder logic. As only a limited number of
micro-commands can be executed in each scan cycle, we are
not able to run the complete actuation strategy based (with a
number of steps determined by the length of our hash) within
a single scan cycle. In particular, in our implementation, we
generate eight micro-commands in one scan cycle. We now
discuss how we addressed this implementation issue.

Splitting the Attestation over Multiple Protocol Rounds.

Overall, we want to execute 256 micro-commands (to match
the 256-bit output of our hash, SHA256). As we can only
execute eight micro-commands in each scan cycle, we need to
execute micro-commands over multiple scan cycles. Unfortu-
nately, this increases the time required for the attestation, and
potentially allows the attacker more time to compute precise
simulations of executions (or communicate with a remote
Oracle). To ensure that this is not possible for the attacker, we
run the overall protocols in 32 rounds, with fresh nonces in
each round. In each round, we execute eight micro-commands
based on the most recent hash. Each round contributes 8 bits
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of difficulty for the attacker to correctly guess the hash (or
spoof sensor reading traces that are decoded to the expected
hash). The Prover is attested by the Verifier only if all 32
rounds conclude successfully. We designed the encoding pro-
cess to keep the PLC busy by the generation of hashes over
the physical process and providing a new nonce in each scan
cycle that convince the PLC to perform the random physical
actuation over each scan cycle while the PLC computation
power is devoted for the new hash generation.

5 Evaluation

In this section, we evaluate our proposal of the physics-based
attestation of the control systems.

5.1 Dataset

Normal Operation. Our training dataset consists of 10
hashes and corresponding sensor reading traces, repeated six
times for each hash (in total 60 runs). The traces are generated
during normal operation (which captures the natural noise of
the physical process) with a sampling rate of ten sensor read-
ings for each micro-command. For our test evaluation dataset,
we performed a number of attacks: a one-bit approximation
attack, two-bit approximation attack, and simulation attacks
(each attack was run 20 times). The overall size of sensor read-
ings and the generated dataset was roughly 100 megabytes.
We now describe the details of our attack implementation.

Hash Approximation Attacks. In this attack, an attacker
modified the control logic of the PLC which resulted in
a different hash (and thus a changed sequence of micro-
commands). To show that PAtt can detect even minor changes
in the hash/actuation sequence, we evaluated the performance
of PAtt against an attacker that flips one or two random bits of
the hash to modify the robot arm’s trajectory. The attacker has
full access to the stored hash and the actuation commands.

In particular, we performed ten one-bit approximation at-
tacks and ten two-bit approximation attacks, and we evaluated
the detection performance based on this attack. As the classi-
fiers of our implementation PAtt are only trained on normal
process behavior, we did not need to include the attack traces
in the classifier training process. The implemented hash ap-
proximation attack was used as a test data-set, which consists
of twenty hashes of sensor traces, and each hash repeated two
times, and the normal operation was used as train data-set.

Replay Attacks. In addition to the effects of incorrect hashes
or manipulated micro-command sequences, we also investi-
gated whether the attacker would be able to produce sensor
reading sequences by simulation (e.g., based on prior obser-
vations). For example, the attacker could try to record and
replay earlier sensor reading traces, or try to re-assemble a
new sensor reading trace from multiple earlier observations.
We now argue why the former is infeasible and then describe

how we evaluated the latter. The attacker could generate a ta-
ble of short sequences of micro-commands and corresponding
sensor readings to simulate sensor reading traces of arbitrary
hashes. Our intuition is that this is not feasible as the sensor
readings are influenced by the trajectory position of the arm
and the average move over a window of time. Considering
the memory and computational resources available on the
PLC, the attacker needs to regenerate the corresponding sen-
sor reading that is influenced by the trajectory position of the
arm and the average move over a window of time. Our results
(presented next) confirm this. The implemented replay attack
was used as a test data-set which consists of ten hashes with
replayed sensor traces from the attack table, and each hash
repeated two times, and the normal operation was used as
train data-set.

5.2 Evaluation Results

To evaluate the performance of PAtt, we use the following
metrics (see Section 10.2 in the Appendix): Sensitivity, Speci-
ficity, Precision, False Positive Rate (FPR), False Negative
Rate (FNR), Accuracy, F1-score, and Matthews Correlation
Coefficient (MCC).
Decoding. We now present our evaluation of different classi-
fiers for decoding the sensor reading traces to the actuation
strategy. The results in Table 2 summarizes the performance
of our classifiers. The most promising classifiers for our data
set were the Random Forest and Multi-Layer Perceptron (with
accuracy 0.9923 and 0.9915, respectively). The tradeoff be-
tween false acceptance and false rejection can be seen in
the ROC, provided in Appendix 10.3. Overall, it can be ob-
served that our decoding is reliably able to translate the sensor
reading traces back into the micro-commands.
Hash Authentication. For remaining analysis, we used the
RF classifier for the decoding. The next step (the hash authen-
tication) required an appropriate value for τ (the threshold for
the weighted Hamming distance between the expected and
decoded hash). We now show how we selected τ, based on
analysis of the distributions of the hashes’ weighted Ham-
ming distances in normal and attack cases. We start with
(more intuitively understandable) figures on the distributions
of weighted Hamming distances in normal operations and
during attacks. Figure 5 shows the weighted Hamming dis-
tance with the occurrence probability distribution of one-bit
approximation attack, two-bit approximation attack, and re-
play attack, respectively. As shown in Figure 5a, the curve
of the occurrence probability distribution of the normal op-
eration overlap with the curve of the occurrence probability
distribution of the one-bit approximation attack. That implies
no value for τ will allow us to decide between the two cases
without error correctly, and it means that there will be a non-
negligible probability that the attacker can perform her attack
while remaining undetected. In contrast, Figure 5b shows the
curve of the occurrence probability distribution of the normal
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(a) Comparison between the weighted
Hamming distance of normal operation and
1-bit hash approximation attack.
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(b) Comparison between the weighted
Hamming distance of normal operation and
2-bit hash approximation attack.
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(c) Comparison between the weighted
Hamming distance of normal operation and
replay attack.

Figure 5: Weighted Hamming distance against the attack use-cases.

Table 2: Performance comparison of different decoding classifiers sorted by accuracy. FPR=False Positive Rate, FNR=False
Negative Rate, MCC=Matthews Correlation Coefficient.

Algorithms Sensitivity Specificity Precision FPR FNR Accuracy F1-score MCC

Random Forest 0.9926 0.9921 0.9920 0.0079 0.0074 0.9923 0.9923 0.9847
Multilayer Perceptron 0.9915 0.9916 0.9915 0.0084 0.0085 0.9915 0.9915 0.9831

Decision Forest 0.9915 0.9895 0.9894 0.0105 0.0085 0.9905 0.9904 0.9810
FURIA 0.9878 0.9921 0.9920 0.0079 0.0122 0.9899 0.9899 0.9799
DTNB 0.9857 0.9910 0.9910 0.0090 0.0143 0.9884 0.9884 0.9767

NBTree 0.9873 0.9889 0.9889 0.0111 0.0127 0.9881 0.9881 0.9762
LMT 0.9873 0.9879 0.9878 0.0121 0.0127 0.9876 0.9875 0.9751

J48 0.9867 0.9868 0.9867 0.0132 0.0133 0.9868 0.9867 0.9735
PART 0.9893 0.9832 0.9830 0.0168 0.0107 0.9862 0.9862 0.9725

REPTree 0.9819 0.9810 0.9809 0.0190 0.0181 0.9815 0.9814 0.9630

operation does not overlap with the curve of the occurrence
probability distribution of the two-bit approximation attack,
which demonstrates that we can precisely detect the two-bit
approximation attack (e.g., by choosing τ = 1). Figure 5c
shows the curve of the occurrence probability distribution of
the normal operation did not overlap with the curve of the
occurrence probability distribution of the replay attack, which
means that we can also precisely detect replay attacks (e.g.,
by choosing τ = 1).

In our experiments (see Table 3), first we studied the per-
formance of PAtt with different values of the τ, from 0.8 to 1.
We used the 60 traces of the normal operation and 60 traces of
attacks in total. The true negative (TN) is the number of nor-
mal operation instances that are correctly classified as normal
operation. The false positive (FP) is the number of normal
operation instances that are wrongly classified as an attack.
The true positive (TP) is the number of attack instances that
are correctly classified as an attack. The false-negative (FN)
is the number of attack instances that are wrongly classified
as normal operation. We confirmed that τ = 1 yields ideal per-
formance in normal operations of the system. In the absence
of attacks, our processing of the sensor reading traces always
produces a hash that is classified as authentic. In addition,

we can detect the implemented attacks attack with Accuracy
of 89%, sensitivity of 78%, and Matthews Correlation Co-
efficient (MCC) of 0.80. Both the two hash approximation
attack and replay attack was detected without any false neg-
ative. Choosing the best value of the τ is dependent on the
operational requirements of the control processes. However,
if the operation of the system could tolerate the false posi-
tives (which would probably trigger the alarm even during
the normal operation), we could choose the τ = 0.95 which
can detect the implemented attacks attack with Accuracy of
97%, the sensitivity of 96%, and MCC of 0.95.

6 Discussion

We now provide an additional discussion on the scalability
of our approach, practical issues with critical zones, and the
use-case scenarios.

6.1 Complexity/Scalability

The PAtt uses physical complexity (physical behavior) as a
root-of-trust. By adding more sensors or actuators to the con-
trol processes, we could achieve a more robust model that
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Table 3: Attack Detection performance comparison of implemented attacks (RF-based decoding). TN=True Negative, FP=False
Positive, TP=True Positive, FN=False Negative, MCC=Matthews Correlation Coefficient.

Threshold Normal 1-bit 2-bit Replay Sensitivity Accuracy F1-score MCC
TN FP TP FN TP FN TP FN

τ = 1 60 0 7 13 20 0 20 0 0.7833 0.8917 0.8785 0.8024
τ = 0.95 59 1 18 2 20 0 20 0 0.9667 0.9750 0.9748 0.9501

τ = 0.9 58 2 18 2 20 0 20 0 0.9667 0.9667 0.9667 0.9333
τ = 0.8 54 6 19 1 20 0 20 0 0.9833 0.9417 0.9440 0.8864

could verify the integrity of the control processes by wrap-
ping this complexity over actuation strategy and the hash. In
addition to the favor of complexity, the PAtt is designed to be
scalable, and it could detect the change of physical complex-
ity (physical behavior) as we have seen in the Section 5 by
detecting the replay attacks which would report a table-based
replay of physical behavior. These features of the PAtt would
make it feasible to authenticate a physical process over an
actuation strategy derived from a random hash.

6.2 Application to other PLCs

We used some APIs from the S7-1200 PLCs to perform
the memory measurements and hash generation. The same
functionality can be provided on other PLCs if they support
the APIs. However, the memory measurement could be pro-
grammed directly in the control logic of the PLCs with some
engineering effort.

6.3 Critical Zones

Given that this attestation routine is being integrated into
safety-critical processes, there are restrictions on when the
attestation process can be performed. We refer to these re-
strictions as critical zones. During a critical zone, the physical
process is engaged in a fixed actuation and thus cannot be
interrupted by an attestation. As an example, in 3D printing,
a critical zone would be when the printer head is extruding
filament. In addition to timing, the safety-critical zone must
also include a spacial component, as actuation generated by
the attestation process must not collide with anything and also
stay within the range of motion of the system. A consequence
of this is that processes that have no downtime or are always
performing some critical action cannot utilize this augmented
attestation method.

6.4 Example Applicable Use-Case Scenarios

In this section, we describe the application of our attestation
scheme in several use-cases. We designed and implemented
PAtt in a robotic arm controlled by a PLC, and we showed
the applicability and security significance of the PAtt in a

real-world ICS. However, PAtt applies to other CPS as well,
where the control process meets the following conditions:

• The control process has the ability to perform high-speed
actuation (such as the 200 kHz PWM signal board that
we used in the implementation of PAtt).

• The control process has powerful sensors that are able
to report the current state of the physical process via a
high-speed channel.

Automated Manufacturing. The first use case is automated
manufacturing, which involves machinery similar to our im-
plementation on a robotic arm. These types of setups are
common in automotive assembly, where a robotic arm manip-
ulates objects in 3D space. Actuation is carefully controlled
and monitored by a PLC. In this situation, the critical zone
occurs when the arm is manipulating an object. Conversely,
when the arm is not gripping an object, the attestation process
can be initiated. As described in the previous section, the con-
ventional attestation report is encoded into micro-actuation
of the robotic arm, resulting in sensor readings to corroborate
the authenticity of the attestation report. In this case, the ini-
tiation of the attestation process must also take into account
the spacial constraints given that the arm must not contact any
objects during the attestation process.
Additive and Subtractive Manufacturing. Additive manu-
facturing processes, most commonly referring to 3D printing,
consist of a printer head extruding heated filament in succes-
sive 2D layers to produce a product. The printing process is
controlled by a micro-controller controlling several stepper
motors. Designs are created in one of the various 3D printing
programs and converted to a standard language of instruc-
tions known as G-code. In recent years, this technology has
seen rapid growth leading not only to 3D printed parts used
in a greater variety of applications, including safety-critical
ones like medical prostheses. Consequently, it is essential to
consider the security aspect of these applications, and much
work has been done in this area already. The application of
our attestation scheme to this process is complicated by the
fact that conventional 3D printers lack the physical sensor
channels leveraged in the robotic arm use-case, only being
equipped with several limit switches for initial calibration,
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then determining position relative to a "home point" through
hard-coded characterization of the stepper motors controlling
the motion of the printer head. However, this can easily be
remedied through the placement of external sensors, like the
accelerometers used in the robotic arm case, on to the printer
head to provide a physical sensing channel to provide actua-
tion feedback for the attestation procedure. In this use-case,
the critical zone takes place when the printer head is extrud-
ing filament; its path is fixed. Thus the attestation procedure
can take place between printing layers after the printer head
is raised to satisfy the spacial aspect of the critical zone. A
similar argument can be made for subtractive manufactur-
ing applications, like laser engraving or CNC milling. Their
setups are similar to 3D printing, with precise but relative
motion control and an on/off-type process dictating their criti-
cal zones. Once again, the addition of cost-effective external
sensors can allow the attestation of these processes.

7 Related Work

Remote Attestation. Remote attestation for embedded sys-
tems has been studied form many years, however, typi-
cally these approaches do not provide real-time execution
guarantees for the system (at least while attestation is in
progress) [10, 15, 30, 59]. The fundamental conflict between
real-time execution and attestation has to be discussed by
Carpent et al. [13]. Additionally, these approaches rely on
a (hardware) root-of-trust, which is not available in today’s
CPS. Software-based attestation does not require a root-of-
trust [28, 36, 37, 52–54], but can only provide uncertain secu-
rity guarantees [55]. Valente et al. propose to leverage control-
command variations to validate the correctness of a system’s
physical operations rather than the system software integrity,
providing “a weak attestation” [61]. Our proposed scheme
combines software-based attestation with control-command
mutations to overcome the limitations of software-based at-
testation while providing guarantees regarding a device’s
software-integrity.

Machine Learning based Anomaly Detection. The authors
of [42] discussed machine learning proposals for anomaly
detection in the ICS. Also, the authors of [33] proposed to use
convolutional neural networks for detecting cyber attacks on
industrial control systems. Machine learning techniques for
anomaly detection in industrial arm applications is discussed
in [43]. Decision trees used in several security research areas
like anomaly detection in network traffic data [8]. The authors
of [44] used deep learning architecture in correlating Tor con-
nections. The authors of [39] used the k-means clustering to
detect traffic phase shifts inside the SCADA automatically.
In [16], the authors discussed data mining and machine learn-
ing techniques for cybersecurity. There are many successful
applications of machine learning in cyber-physical system
security. PAtt uses the machine learning to learn the physi-

cal behavior alongside the other security measures like the
integrity and authenticity checking of the control logic of the
PLCs. Also, PAtt do not need to see the attack during the
training phase. PAtt do not need to see the attack during the
training phase, and it could detect the attack by a distance met-
ric. Also, unlike most of machine learning anomaly detection
techniques, PAtt is able to identify the replay attack.

Physical Unclonable Functions. The authors of [62] pro-
posed to use the MEMS gyroscope as physical unclonable
function, and they showed the feasibility of using the phys-
ical and electrical properties of the MEMS gyroscope for
cryptographic key generation. The authors of [35] proposed
an attested execution processor that do not need secure non-
volatile memory, and it derives cryptographic identities from
manufacturing variation measured by a PUF. Aging effects in
PUFs have been discussed in the [38, 46], which were dom-
inated by physical effects in the resistors. We evaluated the
aging effect on industrial actuators and sensors used in our
experimental evaluation in the Appendix 10.1, and show that
on the scale of our sensors, no aging effects were observed.

8 Conclusion

In this paper, we presented PAtt, a novel remote attestation
scheme for control processes of industrial control systems
that integrates software-based attestation with physical behav-
ior correlations, similar to a PUF. We used software-based
attestation techniques to first generate a fresh hash over the
loaded logic in the PLC, which is then translated into an actu-
ation strategy for the physical process. The resulting sensor
reading traces are then checked by the verifier to ensure that
the correct logic is loaded and to detect spoofing of the pro-
cess data. The proposed solution was able to detect the attack
that is not seen before during the training phase of the ver-
ifier, and it could measure the anomalies by computing the
distance over a cryptographic hash generated from the attes-
tation of the control process. We implemented our solution
(based on a robotic arm test-bed with Siemens PLC), and
show that our proposed solution is accurate enough to detect
the tested attacks with an accuracy of 97%, sensitivity of 96%,
and Matthews Correlation Coefficient of 0.95 (τ = 0.95 ).
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10 Appendices

10.1 The Aging Effect on Classification Per-

formance

The aging effect was reported in many PUF applications at the
semiconductor level [38, 46]. However, such an effect is not
common in mechanical actuators (the preciseness guarantee
of the actuators could be found in the actuators data-sheet).
We evaluated the aging effect by considering two data-sets of
6 months ago (old data-set) and a recent data-set (recent data-
set). As we could see in Table 4 the tuned classifier would
provide better classification results. We would recommend
performing the tuning of the classifier by including the re-
cent normal traces during the idle time of the CPS. However,
the performance of the classifier that is built by training the
old data-set is sufficient for the robot arm use-case that we
evaluated in this paper. Figure 6 shows the true positive rate
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Figure 6: ROC curve of true positive rate (sensitivity) against
false positive rate (1-precision), considering the aging effect.

(sensitivity) against the false positive rate (1-precision) in
aging effect evaluation. As we could see in Figure 6, the clas-
sification performance of the classifiers with the two data-set
of old and recent sensor traces are close to each other.

10.2 Performance Metrics

To evaluate the performance of the proposed method, we used
eight performance metrics. The true positive (TP) is the num-
ber of retrieved relevant instances. The false positive (FP) is
the number of retrieved nonrelevant instances. The true nega-
tive (TN) is the number of not retrieved nonrelevant instances.
The false negative (FN) is the number of not retrieved rele-
vant instances. The Sensitivity rate (Recall, eq. 6) presents
the rate of retrieved relevant instances (TP) in overall relevant
instances (TP + FN). The Precision rate (specificity, eq. 7)
demonstrate the fraction of relevant instances (TP) in overall
retrieved instances (TP + FP).

Sensitivity rate =
T P

T P+FN
(6)

Precision rate =
T P

T P+FP
(7)

The false positive rate (eq. 8) is the rate of retrieved non-
relevant instances (FP) in overall nonrelevant instances (FP +
TN). The false negative rate (eq. 9) is the rate of not retrieved

relevant instances (FN) in overall relevant instances (FN +
TP). The false discovery rate (eq. 10) is the rate of retrieved
nonrelevant instances (FP) in overall retrieved instances (FP
+ TP).

False positive rate =
FP

FP+T N
(8)

False negative rate =
FN

FN +T P
(9)

False discovery rate =
FP

FP+T P
(10)

The accuracy (eq. 11) is the rate of retrieved relevant in-
stances and not retrieved nonrelevant instances (TP + TN) in
overall instances (TP + TN + FP + FN).

Accuracy =
T P+T N

T P+T N +FP+FN
(11)

The F1-score (eq. 12) is a metric for the test’s accuracy. The
F1-score (also F-score or F-measure) is defined as follows:

F1− score =
2×Sensivity×Precision

Sensivity + Precision
(12)

The Matthews correlation coefficient (MCC) is a metric for
the quality of two-class classification. The MCC metric is one
of the most interesting metrics in anomaly detection where
the physical feature will be classified to normal and abnormal
classes. The MCC is defined as follows:

MCC =

T P×T N −FP×FN
√

(T P+FP)× (T P+FN)× (T N +FP)× (T N +FN)

10.3 Decoding ROC

Our ROC (true positive rate (sensitivity) against the false posi-
tive rate (1-precision)) for the decoding classifiers is presented
in Figure 7.

10.4 An Example of Path Strategy

Figure 8 represents the path strategy of 10100010, and the
path strategy of 00000111. We know that the number of
unique paths u in a x×y grid can be computed as follows [57]:

u =
(x+ y)!
(x!y!)

(13)

Thus, we can enumerate all possible paths, and use an
integer between 1 and u as an index to represent a specific
path strategy in a x× y grid.
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Table 4: Performance comparison of different classifiers with different metrics of Sensitivity & Specificity & Precision & FPR
& FNR & Accuracy & F1-score & MCC (Matthews Correlation Coefficient), classifiers: Random Forest (RF) & Multilayer
Perceptron (MLP).

Algorithms Sensitivity Specificity Precision FPR FNR Accuracy F1-score MCC

RF (old) 0.9857 0.9913 0.9912 0.0087 0.0143 0.9885 0.9884 0.9770
MLP (old) 0.9952 0.9826 0.9827 0.0174 0.0048 0.9889 0.9889 0.9779

RF (recent) 0.9912 0.9897 0.9897 0.0103 0.0088 0.9905 0.9905 0.9810
MLP (recent) 0.9881 0.9905 0.9904 0.0095 0.0119 0.9893 0.9892 0.9786
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Figure 7: ROC curve of true positive rate (sensitivity) against
false positive rate (1-precision).

Figure 8: Two examples of path strategies: red=10100010,
dashed green=00000111.
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