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ABSTRACT
Anomaly detection for industrial control systems (ICS) can leverage
process data to detect malicious derivations from expected process
behavior. We propose state-aware anomaly detection that uses state
dependent detection thresholds, which provide tighter constraints
for an attacker trying to manipulate the process. In particular, our
system provides: (i) estimation of system state from the knowl-
edge of the network and the physical process (ii) a state-aware
cumulative sum of residuals for monitoring the industrial control
system (iii) and a novel state-aware anomaly detection technique.
We implement and evaluate our anomaly detection technique on a
real-world ICS. We pre-compute the process-state parameters using
a big data framework for ICS and train the detector leveraging
more than 120 GB of historical data from the ICS. The results show
that the proposed method improves prior works by providing less
time-to-detect of attacks while generating fewer false alarms.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Em-
bedded systems security; • Computer systems organization →
Embedded and cyber-physical systems;
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1 INTRODUCTION
Industrial control systems (ICS) are complex systems able to au-
tonomously monitor and control an industrial process. An ICS
includes heterogeneous interconnected components such as: re-
mote terminal unit (RTU), programmable logic controller (PLC),
telemetry system, historian server, and human-machine interface
(HMI). Those component are typically reachable over the Inter-
net and connected to other embedded devices resulting in a setup
known as the Industrial Internet of Things (IIoT). ICS are designed
for safety and availability, however, security is recently being taken
into consideration given the number of cyber and physical threats
that are menacing the ICS space [11, 13].

There are promising proposals that try to perform stateful anom-
aly detection based on the state of the ICS physical process [3, 12,
19]. For example, in [19] a stateful detection mechanism based on
the use of cumulative sum (CUSUM) of residuals is proposed. This
detector raises the bar for a stealthy attacker. However, it suffers
from calibration problems due to its lack of knowledge of the cur-
rent system state. The main limitation of existing works is that an
attacker will remain undetected below a threshold while leveraging
on sensors and actuators variations due to the different system
states.

As result, the attacker could control the process-state while re-
maining undetected which threatens the industrial control system.
Our paper proposes a state-aware anomaly detection scheme based
on CUSUM detection mechanism. The computation of the resid-
ual depends on the current system state and this will result in
even tighter bound for the stealthy attacker. Furthermore, our pro-
posed detection mechanism adds little pre-computation overhead
in terms of computation with respect to the work [19] because we
pre-compute the physical process state information using our big
data framework, and then configure the detector accordingly.

We evaluate the performance of our detectionmechanism against
state-of-the-art stateful ones, such as [17], in a real water treatment
testbed. We show that a stealthy attack that remains undetected by
such detectors will be detected by our detector. This confirms our
intuition about tighter constraints for a stealthy attacker who is
trying to manipulate the ICS physical process.

We summarize our contributions as follows:
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• Wedesign and implement a CUSUM-based state-aware anom-
aly detection scheme for industrial control systems.
• We propose a way to compute CUSUM residuals based on the
current system state without incurring in major computation
overhead by pre-computing the states’ information.
• We evaluate our scheme against state-of-the-art stateful
detection mechanism on a real water treatment testbed.
We show that our detector provides tighter bounds for the
stealthy attacker, and lower exposure time than the others.

The remainder of this paper organized as follows. Section 2
provides a context of the testbed, and the HAMIDS framework. In
Section 3 we present our proposed framework. We describe our
use-case in Section 4. Section 5 demonstrates the implementation
and results of experimental validation. We summarize the related
works at Section 6. Finally, the paper concludes with Section 7.

1(a) The SWaT, testbed of this paper.

1(b) Raspberry Pi devices next to the PLCs.

Figure 1: The ICS of this paper.

2 BACKGROUND
In this section, we introduce the relevant background about the
Secure Water Treatment (SWaT), and the HAMIDS framework.
We conclude the section with a discussion about stateful anomaly
detection, and measurements of the water tank levels.

2.1 SWaT Testbed
The SWaT (SecureWater Treatment) [10] is a six-stage process plant
of industrial water treatment systems, designed for cyber-physical
security research. The general research goal of operating such plant
is to advance the safety and security of critical infrastructures. In
particular, it is intended to improve the safety and security of Cyber-
Physical Systems (CPS) such as water treatment systems, power
grids, and oil and natural gas refineries.

Initially, the SWaT plant receives the raw water in the first pro-
cess, and it adds some chemicals to the received raw water. At the
ultrafiltration process, the received water will filter, and then it will
push to dechlorination by using UV lamps. Then, the water will
be clean in the reverse osmosis process. Figure 1a shows the SWaT
testbed.

2.2 HAMIDS framework
The HAMIDS (HierArchical Monitoring Intrusion Detection Sys-
tem ) [6] is a framework that designed for security analysis and
research in Industrial Control Systems field. This framework pro-
vides a device-level knowledge of the industrial applications by
parsing industrial network protocols. In addition, it provides a plat-
form for other researchers to perform industrial process analysis,
safety or security analysis. The main component of packet parser
of the HAMIDS framework is Bro that implemented to provide a
high-level knowledge of industrial network traffic. We used a clus-
ter setup of the Bro with cluster manager as depicted in Figure 4.
By using the cluster, high-level knowledge of industrial network
protocols will collect at a central server for further analysis and
processing. The HAMIDS framework was designed to support CIP
and EtherNet/IP traffic parsing, and traffic handlers will trigger on
traffic using ports relating to both CIP and EtherNet/IP. The hierar-
chical aspect of the HAMIDS framework refers to the detection of
several layers and segments of the ICS network, aggregated at the
cluster manager. The visualization and data analysis component of
this paper builds up at the top of the HAMIDS framework. The au-
thors of [1] discussed the performance of the HAMIDS framework
in a real intrusion test by invited intruders.

2.3 Stateful Anomaly Detection with CUSUM
The Cumulative Sum (CUSUM) algorithm was proposed in [18, 19]
to offer a stateful aggregation and detection of anomalies based on
residuals. These methods use the history of the system state for
anomaly detection. Typically, they can limit the impact of stealthy
attacks with better performance than stateless techniques that only
consider the current state of the system.

Residuals. A stateless detection technique will raise an alarm if
the absolute difference between the sensor reading and estimated
system state was higher than a threshold. We call this absolute
difference the residual estimation. The residual is defined as:
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rk = |yk − ŷk | (1)

CUSUM. The non-parametric CUmulative SUM (CUSUM) statistic
is recursively computed as follows:

Sk =



0 where k = 0
(Sk−1 + rk − α )

+ where k , 0
(2)

where (x )+ meansmax (0,x ) and α is the tuning value that se-
lected to keep |rk | − α < 0 under a normal operation. However, we
argue that this is not a perfect CUSUM computation as hypothe-
sis H0 contains different states of the system, and for each state
there are different tuning parameters. The authors of [19] proposed
a state-independent CUSUM computation. The anomaly detector
raises an alarm when the CUSUM passes the threshold. Then the
CUSUM test will be restarted after passing the threshold at time k,
i. e., Sk−1 = 0.

Controller

SensorsPhysical ProcessActuators

yk

zkvk

uk(Normal Operations)

Process Model
Anomaly 

Detector
State &

 Residual
Alarm

Figure 2: The framework structure.

2.4 Water Level Sensor
The demand for process control and stringent regulatory environ-
ment drive industrial control engineers to design more reliable level
measurement systems. There are different proposals for water level
sensors including (i) Floats, (ii) Hydrostatic Devices, (iii) Load Cells,
(iv) Magnetic Level Gauges, (v) Capacitance Transmitters, (vi) Mag-
netostrictive Level Transmitters, (vii) Ultrasonic Level Transmitters,
and (viii) Laser Level Transmitters.

In SWaT, the water tank level sensor is an ultrasonic level sensor
that reliably and precisely measures the level of the water in the
water tank. Table 1 describes features of the water tank level sensor
of the SWaT testbed. The most important causes of noise in the
water level measurement process are: (i) Accuracy level of the
sensor (ii) Water movement in the tank

3 STATE-AWARE ANOMALY DETECTION
In this section, we describe our stateful process state-aware anom-
aly detection method for industrial control network traffic. In [19],
CUSUM-based detectors for attacks on ICS are discussed. The au-
thors note that the detector is mitigating the attack, but not entirely
prevent it. In particular, attacks will remain undetected unless their
impact passes a fixed threshold. As a result, an intelligent attacker

Table 1: Water tank level sensor specifications.

Parameter Specification

1 Name Level Wizard II 10 DB
2 Accuracy max(+/-0.25%, 6 mm)
3 Resolution max(0.1%, 2 mm)
4 Maximum Range 10 meters
5 Operating frequency 41 kHz

might remain undetected while she is performing the attack. We
note that the parametrization of the CUSUM-based detector is essen-
tial for the performance of such a countermeasure, which motivated
this work. In particular, we consider the following questions:

1. How can we optimize the computation of the residual ac-
cording to the state of the physical process?

2. Is it reasonable to use the process-states in overall CUSUM
computation?

Attacker and System Model. The system under attack is an in-
dustrial process with automatic controls. A number of sensors are
used to monitor the physical process. We assume that the sensors
are not controlled by the adversary and they provide correct sensor
readings. Those readings are then used for automatic control by
local PLCs and the SCADA system. A detection system is used to
mitigate the impact of an attack. The detection system could use
data collected by the sensors directly, or obtain processed data from
the PLCs or even from the SCADA and the historian server.

The attacker’s goal is to manipulate the physical process to
change its state to unsafe conditions (e.g., to damage the system),
or to decrease the overall efficiency of the system. The attacker
is able to manipulate network traffic of both the supervisory con-
trol network and the field communications network. The authors
of [17] discussed the impact of the attacking Fieldbus communica-
tion. In [19] the authors proposed physical modeling to limit the
impact of a Fieldbus attacks. To evaluate our proposed state-aware
anomaly detection, we used the intelligent attack against tank level
discussed in [18]. The attacker slowly changes the sensor reading
of a tank level using a small constant increment trying to remain
undetected.
Framework Overview. The structure of the framework is summa-
rized in Figure 2. A physical process is observed, in particular, the
traffic containing control and sensor values, together with general
traffic exchanged in the network. Those values are processed by the
IDS to generate the required parameters for the anomaly detection.
During the real-time detection, the anomaly detector determines
the current state of the physical process and uses that input to
choose appropriate parameters (e.g., mean of residuals in normal
operation) for anomaly detection.

3.1 Physical Anomalies

Physical Process Model. The physical system behavior model
can be learned from observations through a technique called sys-
tem identification. The most used models are Auto-Regressive (AR)
models and Linear Dynamical State-space (LDS) models. We used
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3(e) Residuals of water tank reading and different states.

Figure 3: Sensor readings, estimates, and residuals in non-attack case.

Linear Dynamical State-Space (LDS) model in our work. LDS mod-
els are a subset of state space models. Consider that the inputs
(control commands uk ) and outputs (sensor measurements yk ) of

the physical system are available. The dynamic modeling of the
physical system will be:
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xk+1 = Axk + Buk + ϵk

yk = Cxk + Duk + ek
(3)

where A, B, C , and D are modeling metrics of the dynamics of
the physical system, ek and ϵk are sensor and perturbation noise.
We will see in physical modeling part how we will use the LDS to
model our physical system.
State observer. State observers are used to dynamically provide
an estimation of the system with and without the noise. Industrial
processes consist of a variety of states. Here, we consider the process
states in our computation as an input of the anomaly detection
system. There are many proposals for estimation of the state of a
dynamic system such as Luenberger observers [16] and the Kalman
filter [2]. Those techniques are used to dynamically estimate the
system state with and without the noise, respectively. They provide
a stateless detection and their drawbacks are discussed in [19].
Interested readers are encouraged to read [17, 18]. In this paper, we
consider the sensor noise as a significant parameter for system state
detection. In addition, we will consider the process state impact on
the sensor noise model.
Process-State Dependent Residual Computation. Consider p
as process state of the industrial component that we are modeling.
Instead of computing the residual as defined before (i.e., r = |y−ŷ |),
we now introduce a process state-dependent way to compute the
residual. In particular, we normalize the residual with its historical
average µp for the current process state p:

r [t ,p] = | |y[t] − ŷ[t]| − µp | (4)
where y is the observed sensor value, and ŷ is the output of the

observer, i.e. the estimate sensor value computed by Equation 3.
Computation of µp . µp is computed from historical data of the
ICS physical process while being in different process states. We
assume that during data collection time, no attack was conducted.
Then, we compute µp from the average of all residuals computed
while the process was in state p:

µp = E(r [t ,p]) ∀t where process state = p (5)

Process-State Dependent CUSUM Parameters. Based on the
process-state dependent residual as defined in Equation 4, we use
the CUSUM computation as follows:

Sk =



0 where k = 0
(Sk−1 + |rk − µp | − α )

+ where k , 0
(6)

where (x )+ is themax (0,x ) and α is the tuning value that we
selected to keep |rk − µp | − α < 0 under a normal operation. We
argue that this is a better CUSUM computation under hypothesis
H0 that consider states of the system and for each state, it uses µp
as tuning parameter. The anomaly detector raises an alarm when
the CUSUM passes the threshold. Then the CUSUM test will be
restarted after passing the threshold at time k, i. e., Sk−1 = 0.

4 USE CASE: WATER TANK IN SWAT
Process States forWater Tank Process. Consider the water tank
filling of PLC1 as a process. It has two states for In-flow and Out-
flow. As result, we have four distinct process states. Our model
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Figure 4: Implemented big data framework.

Table 2: Computed mean of water tank level residuals, P is
the pump status and V is the valve status, P means that the
pump is on and ¬P means the pump is off.

State Boolean Algebra Mean

A ¬P ∧ ¬V 0.48
B ¬P ∧V 1.65
C P ∧ ¬V 0.25
D P ∧V 1.15

depends on the process states. Figure 3b depicts the process states
based on the pump and valve status. In addition, Figure 3a demon-
strates the tank level corresponding to the process state of Figure 3b.
Figure 3c demonstrates level sensor residual imposed from different
water tank process states. As we could see in Figure 3c when both
pump and valve is closed the level sensor noise is low (State A).
When the pump is open, and the valve is closed, the water tank
level sensor residual will decrease as presented in Figure 3c (State
C). This water tank level sensor residual decrement is caused by
the placement of the pump and the decreasing water level. When
the valve is open and the pump is closed, a volume of water that is
pushed into the tank will cause water level distortion as depicted in
Figure 3c (State B). Finally, when both valve and pump is open the
residual would be as depicted in Figure 3c (State D). We extract the
mean of water tank level residual for further processing of CUSUM.
Table 2 present the computed mean of the residual of these four
states as depicted in Figure 3c.

4.1 Residuals in non-attack case
System Model of Water Tank.

Consider the tank levelh concerning incomingQin and outgoing
Qout volume of water. Then, the cross-sectional area of the base of
the tank will be:

Area
dh

dt
= Qin −Qout (7)
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By performing a discretization the time with a period of one
second, the physical model of the tank level will be [18]:

hk+1 = hk +
Qin
k −Q

out
k

Area
(8)

Note that Equation 8 represents an LDS model because the input
Qin
k − Qout

k changes over time [18]. To detect anomalies in the
reported tank level, our system continuously models the current
state of each tank with such a linearized stateful model. Thus, we
are able to obtain an estimate of the tank level for each time step.
Deducting the estimated tank level from the reported value, we
obtain a residual which is then used for the anomaly detection.

In Figure 3, we show example values for normal systems oper-
ations with high water movement. The provided example is not
occurring frequently during the water treatment process, and the
intuition behind this case is to provide a clear differentiation be-
tween the proposed method and [19] under a system with normal
operation. In particular, we compared the observed and estimated
tank level, the states of valves and pumps (to derive component
states), the related residuals (r and r [p]), and CUSUM computations.
It can be noted that for the provided example sequence of opera-
tions, the CUSUM with static α is increasing over time, and would
eventually cross any threshold.

4.2 Residuals in attack case
We consider that the attacker knows our detection strategy and tries
to avoid detection. An optimal greedy attacker (ya∗) at time t will
try to maximize the residual while remaining below the threshold.

ya∗k+1 =



arg maxayk+1 |yk+1 − y
a
k+1 |

arg minayk+1 |yk+1 − y
a
k+1 |

(9)

The attacker goal in stateless detection techniques will be:

ya∗k+1 = ˆyk+1 ± τ (10)

Discussion about the stateless techniques is out of the scope of this
paper. The attacker goal in stateful detection techniques will be:

ya∗k+1 = max{yk+1 : Sk+1 ≤ τ } (11)

The CUSUM computed by Equation 2. A greedy optimal attacker
tries to not pass the threshold of CUSUM, i. e., SK = τ . Hence, the
attacker goal will be:

ya∗k+1 = ˆyk+1 ± (τ + α − Sk ) (12)

As proposed in Section 3.1 by using Equation 6 the attacker goal
while the system process is in state p will be:

ya∗k+1 = ˆyk+1 ∓ µp ± (τ + α − Sk ) (13)

As depicted in Figure 5 the attacker try to remain beyond the
threshold while performing the attack. As the attacker knows our
attack detection model the optimal attack could be performed when
the process has lowest µp or highest µp , depending whether she
choose arg min or arg max in Equation 9.

4.3 State-Aware Detector
The authors of [17–19] used a constant threshold CUSUM to detect
the attacks in Fieldbus. Alongside the static threshold, we use the
process state to determine the effect of the sensor and water move-
ment in computed residual. As Figure 3c shows our proposed state
aware residual will remain smooth during a normal operation of the
industrial control system. Hence, it will not increase the CUSUM
to generate a false alarm (Figure 3d). During the attack (as depicted
in Figure 5c) our proposed method will react to anomalies and it
will increase the CUSUM similar to the work [19](Figure 5d).

5 IMPLEMENTATION AND EVALUATION
We now present the implemented proposed framework, which
is continuously monitoring the operations of the SWaT system.
The HAMIDS framework is used to process the industrial network
traffic, and detect events (see Section 2). Those detected events are
then stored in a central cluster. We now provide further details on
the central cluster, and the distributed IDS components used.

5.1 Implementation Challenges
The proposed method need handling a huge amount of data to
produce our detection model. These data will be collected from the
history of the normal operation of the plant. Overall, our distributed
framework generates about 4000 log entries per minute depending
on the running physical process, with a size of between 20 GB to
50 GB per day after compression. We used data recorded for three
days. Our big data framework processed about 120 GB of data to
produce the detection model.

5.2 IDS components
TrafficCollection andAnalysis.We leveraged six Raspberry Pi 3
devices to collect and analyzed the industrial traffic in the different
network segments. Those Raspberry Pi devices are placed in the
PLCs (Figure 1b) and pass the useful data from PLCs to our central
cluster.

5.3 Big-Data Framework
The central cluster is running on a machine with 12 (logical) CPU
cores and 20GB of RAM, running Ubuntu server 16.04. In the central
cluster, we use the Elastic stack to provide real-time log recording
and processing (see Figure 4). This is the heart of our big data
processing framework. It will store more than seven days history
of the industrial control process.
Logstash. Logstash is an open-source data collection and log pars-
ing engine that used as an interface between the HAMIDS frame-
work and Elasticsearch. The Logstash parser was designed to extract
the industrial network protocol commands like EtherNet/IP com-
mands. It intended to parse the packets containing the states and
values of industrial sensors and actuator. We used Ruby scripting
to provide processed data for log recording and processing at the
Elasticsearch.
Elasticsearch. Elasticsearch is an open-source search engine that
provides a distributed full-text search engine with JSON documents
and anHTTPweb interface. Its compatibility with other log process-
ing software offers a broad range of functionalities for Elasticsearch.
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5(d) Cumulative sum of residuals.

Figure 5: Sensor readings, estimates, and residuals in non-attack case.

The distribution feature of the Elasticsearch enables it to process an
enormous amount of data and also the capability of stream process-
ing that is the fundamental necessity of on-line intrusion detection
systems.
Kibana. Kibana is an open-source analysis and visualization plat-
form of the Elastic stack that is used in most of data and security
analysis projects. Kibana visualizes the indexed content on the Elas-
ticsearch cluster and provides a fantastic dashboard for its user so
that they could quickly analyze the data. In our proposed frame-
work we provide a dashboard for the industrial operator to monitor
the industrial control system securely and have an in-depth knowl-
edge of the ongoing industrial process directly both in the PLCs
and at the level 1 of the industrial control network. Figure 4 depicts
the elements of the implemented framework.

5.4 Evaluation

Scenario. To evaluate the proposed frameworkwe performed cyber
and physical attacks in the SWaT. The network-based intrusion
detection system discussed in [6] is out of the scope of this paper.
To evaluate our proposed detection technique, we perform three
cyber-physical attacks that intercept the industrial control traffic
and manipulate the traffic to change the sensor reading values. In
this scenario, we assume that the adversary mounts a man-in-the-
middle attack in the Fieldbus network with the following goals:

• Goal 1 (MitM) Intercept the industrial process network traffic.
• Goal 2 (Manipulation) Change the tank level while it remains
beyond the threshold of both stateless and stateful detection
techniques.
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In other words, the attacker will launch the attack at certain points
of the process state that have high or low residuals. The attacker
tries to change the values in a way that the caused residual will
not pass three times of the residuals seen in normal operation after
removing the attack. In this way stateless or the stateful detection
techniques are not able to detect the attack.
Physical anomaly detection. The physical processes follow spe-
cific physical model that could be used to verify the ongoing process
in the industrial control system components. As proposed in [19],
physical modeling techniques will look at the received physical
measurements to detect anomalies in physical processes. Here, we
focus on the water tank level and the status of pumps and valves
of the process. To perform a comprehensive evaluation of physical
modeling we implemented the works [17–19] in our framework.
There are residuals between estimated water tank level and received
water tank level. As depicted in Figure 5a attacker choose the state
C in her attack and intelligently reduce the water tank level with
an angle lower than its normal angle to maintain the pump open
for five more seconds. Then, the attacker stops her attack. This
will cause a distortion in residual as depicted Figure 5c below the
stateless detection thresholds. Then, she continues her attack when
both pump and valves are open (state D). The goal is to keep the
valve open for more 5 seconds. As Figure 5c shows, this will lead to
higher residuals while the CUSUM of residuals remains below the
stateless detection thresholds. Finally, the attacker chooses state B
that has highest residuals.

Based on [19] the detector will detect these type of attacks af-
ter passing a specific threshold of CUSUM. However, the chosen
threshold will not be reached during our implemented attack. This
is while our detection mechanism will react to the attack from its
start point and after passing the threshold, it will raise the alarm.
The minimum proposed threshold of [19] is 300mm, and we chose
30mm as threshold due to the preciseness of proposed process-state
aware anomaly detection system. We chose the threshold of pro-
posed detection technique based on the behavior of CUSUM based
detection technique in normal operation.

Figure 6a presents the number of false alarms generated during a
one-day normal operation of SWaT when using different thresholds
from 10 to 100. As this figure depicts, the best threshold that we
could use is 30mm as its false alarms during the normal operation
is close to zero. The comparison between our proposed method
and the work [19] shows that our proposed method provides less
false alarms compared to existing state-of-the-art stateful detec-
tion mechanisms. Figure 6b demonstrates the time-to-detect of a
launched attack to increase the tank level by keeping the valve open.
As this figure shows, our method achieves a lower detection time
comparing with [19]. We could conclude from Figures 6b and 6a
that proposed method achieves lower attack detection time in SWaT
while generating less false alarms.

6 RELATED WORK
Stateful Detection. Traditional non state-aware stateful detectors
were proposed in combination with data analytics techniques in [4,
8].

Such detection mechanism was used to evaluate different sce-
narios such as detect coordinated injection attacks [5], prevent
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6(a) Comparison between number of false alarms generated with
different thresholds.
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6(b) Comparison between time-to-detect of the attackwith different
thresholds.

Figure 6: False alarm and time-to-detect

collisions in a vehicular platoon [14], and monitor the state of a
security camera [20]. A window of stateful detection techniques
were discussed in [9, 12, 15].

Alternative CUSUM-based detectors were also proposed, e. g.,
Variable Threshold Window Limited CUmulative SUM
(VTWL CUSUM) [21]. State-aware detection mechanisms based on
sensor values clustering are discussed in [7, 8]. An evaluation of
a state-aware detector against stealthy attack is presented in [4].
The authors of [17] discussed the impact of the attacking Fieldbus
communication. In [19] the authors proposed stateful CUSUM to
limit the impact of Fieldbus attacks. In this paper, we used the intel-
ligent attack against tank level that the attacker tries to change the
sensor reading of the tank level with a constant value to remain
undetected by changing the sensor measurement slowly. Our pro-
posed method significantly improves the existing work in terms of
detection rate and detection time compared to other proposed solu-
tions like [17], [19], and [18]. We implemented these solutions in
our framework and we compared them in experimental evaluation
part.

7 CONCLUSIONS
In this paper, we proposed a framework for state aware anomaly
detection in industrial control systems. We implemented the frame-
work by extending the HAMIDS framework with added support for
log recording, processing, analysis, and anomaly detection. Besides,
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we propose a state-aware anomaly detection based on CUSUM com-
putation. Our experimental results demonstrate that the proposed
method improves existing works by providing lower exposure time
while offering better detection. In particular, the proposed method
decreases up to 30.66% time to detect and close false alarm rate
by choosing the threshold of 100 mm. Also, the proposed method
offers up to 99.21% fewer false alarm with the threshold of 30 mm
and 14.50% less time to detect.
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