
Design and Large-Scale Evaluation of WiFi
Proximity Metrics

Aymen Fakhreddine
IMDEA Networks Institute

& University Carlos III of Madrid
Madrid, Spain

aymen.fakhreddine@imdea.org

Nils Ole Tippenhauer
Singapore University of Technology and Design

Singapore
nils tippenhauer@sutd.edu.sg

Domenico Giustiniano
IMDEA Networks Institute

Madrid, Spain
domenico.giustiniano@imdea.org

Abstract—We study the problem of deriving proximity metrics
based on WiFi fingerprints without the need of external sensors
and access to the locations of APs. Applications that benefit from
proximity metrics are movement estimation of a single node
over time, WiFi fingerprint matching for localization systems
and attacks on privacy. Using a large-scale, real-world WiFi
fingerprint data set consisting of 200,000 fingerprints resulting
from a large deployment of wearable WiFi sensors, we show
that metrics from related work perform poorly on real-world
data. We analyze the cause for this poor performance, and show
that imperfect observations of APs in the neighborhood are the
root cause. We then propose improved metrics to provide such
proximity estimates, without requiring knowledge of location
for the observed AP. Our metrics allow to derive a relative
distance estimate based on two observed WiFi fingerprints. We
demonstrate that their performance is superior to the related
work metrics.

I. INTRODUCTION

In recent years, mobile smart devices have become ubiq-
uitous, e.g., smart phones, personal health devices, smart
watches, and other smart home appliances. Low cost require-
ments and integration with legacy networks lead to wide adop-
tion of IEEE 802.11-based wireless communication (WiFi).
Many such devices, and devices that are part of the so-
called Internet-of-Things (IoT), interact with their physical
environment and physically close communication partners
either directly or via cloud platforms.

To determine the physical locations of such devices, WiFi-
localization based approaches have become widespread. Typi-
cally, the mobile device collects a wireless fingerprint at their
current location. This consists of set of MAC addresses of
nearby Access Points (APs), and their received signal strength
indicator called RSSI. This fingerprint data is sent to a third-
party cloud service (such as Google, Apple, Skyhook, etc.),
that estimates the device’s location. The motivation for using
a third-party cloud service is that fingerprint data is noisy, and
it requires a large set of measurements from a large number
of users and access to a large database of positions of APs in
order to provide high-to-medium accuracy level.

In this work, we look at the problem of WiFi proximity
metrics in positioning systems, i.e., metrics that allow to
estimate the spatial correlation or physical distance between
two WiFi fingerprints. Such metrics can be valuable in a
number of scenarios:

• Measurement sanitization for user-assisted WiFi localization
database building [1], [2];

• Fingerprint ambiguity estimation in an unknown environ-
ment [3];

• Detection of co-location for mobile applications on mobile
devices (as attack on users’ privacy, see [4] for Bluetooth).
There are three main challenges to address to effectively

solve the problem of WiFi proximity metrics.
Challenge 1: Design of proximity metrics without using any

external sensors. To the best of our knowledge, metrics that do
not require any external sensors have received limited attention
in related work. Yet, the availability of a solution in this space
would allow a widespread adoption to any WiFi transceiver,
from low-end IoT device to more powerful smartphone device.

Challenge 2: Metrics that can cope with probabilistic
observations. Fingerprints might not contain information of
all APs in range. There are two reasons:
• storage constraints might limit the number of APs stored

for each fingerprint;
• collisions, time-out, and channel hopping during WiFi scan-

ning can prevent deterministic observations of nearby APs.
Storage of WiFi fingerprints can require relatively large
amount of memory, if the MAC address (6 Bytes) and an
RSSI value (1 Byte) is stored for each AP. Given the growing
density of WiFi APs, single scans for neighboring APs can
easily return 30 and more results. Storing an unlimited number
of APs per fingerprint can thus violate memory constraints.

Challenge 3: Metrics that do not have access to large
databases of known locations of APs. In this work, we are
interested in metrics that do not require prior knowledge of
the locations of APs in the environment. In particular, large-
scale records of AP locations are proprietary data owned by
few companies, and not accessible by the public.

Finally, related work lacks of large scale real-world data
evaluation of proximity metrics, which are needed to assess
the soundness of the proposed solution.

Our main contributions are listed in what follows:
• We perform an extensive evaluation of a novel Jaccard

Index-based metric and two prior work metrics over two
main datasets: i) an artificial dataset based on simplified
propagation models and perfect knowledge of the true



locations, and ii) a large-scale, real-world WiFi fingerprint
data set consisting of 200, 000 fingerprints resulting from a
large deployment of wearable WiFi sensors [5].

• We identify key drawbacks of all three metrics using our
real-world dataset, analyze the causes and propose a model
to explain the issue. Further analysis of our dataset confirms
that our model closely matches observed data.

• Based on our error model, we propose three improved dis-
tance metric definitions. Our proposed metrics only require
two WiFi fingerprints readings, and enable mobile devices
to compute the results i) without continuous requests to the
third-party cloud service, ii) without disclosing the location
to the cloud service and to neighbor nodes, and iii) with
limited requirements of local storage and low computational
and implementation complexity.
This work is structured as follows. In Section II, we

introduce the system model, metrics from related work and
the datasets used (real and simulated data). In Section III, we
introduce the detailed problem, our first attempts at addressing
it, and investigations into mismatch between performance on
simulated data versus real data. To address performance drop
with real data, we introduce improved metrics Section V and
show that they perform well in both settings. We conclude in
Section VI.

II. BACKGROUND

A. System Model and WiFi Fingerprints

In this work, we focus on IEEE 802.11b (which we will
refer to as WiFi), but general principles hold for other wireless
standards as well. We consider a node with wireless transceiver
that is capable of observing the presence of WiFi APs and
their RSSI values. To simplify the discussion, we assume that
the infrastructure is static, and the node is moving over time.
We also assume that omnidirectional antennas are used. The
density of APs in range can vary from 0 to more than 40.

The node gathers measurements of WiFi fingerprints over
time. Then, the node uses the proximity metric to find an
estimate of the moved distance for consecutive fingerprints.
We use the following notation in this work to refer to WiFi
fingerprints. We define n as our node of interest, a set A of all
APs in the target area, and N ⊂ A as the subset of nearby APs
within A that are in range of node n. We use |N| to indicate
the cardinality of a set, i.e. the count of distinct items in the
set. For integers |x| is the absolute value of x.

Let oi = (RSSIi,MACi) denote the AP observation of
n for AP i. If i is not in N, then RSSIi = 0. Then,
F = {oi} ,∀i ∈ N is a WiFi fingerprint which corresponds
to the list of observations of currently neighboring WiFi APs.
In case of multiple fingerprints, we will use a notation of Fa

with Na as set of neighbors.

B. Related Work Metrics

In the following, we use Na,Nb as set of neighboring APs
of fingerprint Fa, Fb, respectively. The observation oai refers
to AP i ∈ Na in fingerprint Fa. We consider the following
two metrics, MetricE and MetricM, from related work. We

present them only for the sake of comparing them to the ones
we design in this work.
MetricE (Euclidean Distance): In [6], the authors discuss
RSSI proximity metrics. They propose to compute the Eu-
clidean distance between the RSSI vectors {RSSIai}i∈Na∩Nb

and {RSSIbi}i∈Na∩Nb
from the set of APs Na ∩Nb present in

both fingerprints Fa and Fb:

m(Fa, Fb) =

√ ∑
i∈Na∩Nb

[
RSSIai − RSSIbi

]2
(1)

MetricM (The ”Manhattan” distance): In [6], the authors
also propose to use the Manhattan distance that refers to the
sum of the absolute differences instead of the Euclidean one.

m(Fa, Fb) =
∑

i∈Na∩Nb

|RSSIai − RSSIbi| (2)

C. NSE Dataset

Our evaluation uses a large-scale real-world dataset, col-
lected as part of the National Science Experiment (NSE)
project in Singapore. We now briefly introduce the SENSg
devices that are used to gather the dataset.

SENSg sensors: A total of 50,000 devices are produced and
used by students at schools. The students wear the devices for
a week or longer, and collect data about their daily life. The
data is automatically uploaded to a cloud platform, and made
available to the students to analyze. The devices are called
SENSg [5], and they record WiFi fingerprints (as defined in
this work) every 12 seconds. Using a third party API, the WiFi
fingerprints are mapped to location estimates after the data
is uploaded to the cloud. The SENSg devices store only the
20 APs with highest RSSI per fingerprint. Storing the MAC
address and received signal strength for each AP requires 7
Bytes, so a fingerprint with 20 observed APs is 140 Byte large.

Measurements and data gathering: The real world datasets
used in this work are gathered by students during the NSE
project. In particular, the dataset used in this work is a subset
of all fingerprints taken. For all fingerprints used, we also have
a location estimate by the third party API. Location provided
by the third party API is subject to accuracy errors, as in
typical cloud-based location based-systems.

D. Simulation setup

In addition to the real world dataset, we generate an artificial
dataset with 200, 000 fingerprints as in the real measurement
data. The fingerprints are randomly distributed in an area
which is roughly equivalent to the area covered in the real-
world dataset. We generate this second dataset to have a better
control over noise and other factors that lead to unexpected
behavior in the observed APs, and their RSSI values. In addi-
tion, this allows us to know the true location of fingerprints,
which will be exploited in the evaluation.

To simulate path loss L(d) and the resulting RSSI, we use
the 802.11 propagation model E presented in [7] that takes into
account LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight)
channels, breaking point distance in which the attenuation



(a) MetricE (b) MetricM (c) MetricJ

Fig. 1: Simulation-based evaluation of initially proposed vs prior work metrics.

slope drastically changes because of the scattering effect, log-
normal shadowing, fading and other physical channel phe-
nomena. L(d) consists in the sum of a freespace component
LFS(d) whose slope depends on the distance d in comparison
to the aforementioned breakpoint distance dBP and a shadow
fading component SF (d) that accounts for the large scale
scattering.

L(d) =

{
LFS(d) + SF (d) d ≤ dBP

LFS(dBP ) + 10α2 log10
(

d
dBP

)
+ SF (d) d > dBP

(3)
α2 is the attenuation slope after dBP while LFS(d) is

computed with a lower attenuation slope α1 before dBP .

LFS(d) = 10α1 log10

(4πfd
c

)
(4)

f denotes the frequency and c the speed of light in vacuum.
The shadow fading component is modeled by a log-normal
distribution centered in zero with a standard deviation σSF .
The constants for model E as introduced in [8] are the
following: dBP = 20 meters, α1 = 2, α2 = 3.5 and
σSF = {3, 6}.

III. PROXIMITY METRICS FOR WIFI FINGERPRINTS

In this section, we summarize our problem statement, and
then present a number of candidate proximity metrics that will
be evaluated later.

A. Problem Statement

Our goal is to provide a metric m(Fa, Fb) able to estimate
the expected spatial correlation between two fingerprints. The
metric will be optimized for accuracy in the estimate, and low
computational cost. Intuitively, that metric should be 1 if two
fingerprints are taken at the exact same location, and 0 if they
are completely uncorrelated (e.g., no single access point was
observed by both fingerprints).

Consequently, we define the proximity metric as a function
m(Fa, Fb) = y between the fingerprints Fa and Fb, with 0 ≤
y ≤ 1.

B. Problems with Metrics from Related Work

We evaluate MetricE and MetricM from related work over
our simulated data set. We summarize the results in Figure 1
(a) & (b). From our study, we find that both have several
issues: i) they are not normalized, but return a value ≥ 0,
with smaller values indicating proximity; ii) they do not work
well for distances larger than 15 meters, for which only few

mutual APs are observed. We note that the original work used
the metrics to find closest matching fingerprint pairs, and not
to estimate exact distances. As it can be seen in Figure 1, for
distances greater than 15 meters, the metric score is decreasing
on average, leading to values indicating closer proximity. One
explanation for that behavior could be that with increasing
distance between the fingerprint locations, fewer mutual APs
are observed and the sum of RSSI differences will decrease
with increasing distance. This is a practical issue, as low metric
score could either indicate close proximity, or distances of
more than 15 meters. To the best of our knowledge, such issues
were not discussed before in related work.

C. Using Jaccard-Index to Reward Mutual Observations

Based on the above findings, intuitively, a metric should
score high if a large fraction of the APs observed in two
fingerprints are shared, i.e. mutually observed. Based on that,
our initial proposal is to use a metric that contains a factor
relating to the Jaccard Index [9], defined as:

m(Fa, Fb) =
|Na ∩ Nb|
|Na ∪ Nb|

(5)

In other terms, for two fingerprints, the Jaccard Index is a
ratio of number of mutually observed APs, divided by the
total number of observed APs. To simplify the discussion, our
first proposed metric MetricJ is exactly the Jaccard Index, see
Eq. 5.

We note that MetricJ is range-free, i.e. RSSI values are
not directly used, while MetricE and MetricM measure the
similarity of RSSI values of APs that are observed in both
fingerprints. Nevertheless, we evaluate the use of MetricJ as
distance metric, and discuss the results. We later discuss the
use of the Jaccard Index as factor to scale other range-based
metrics.

We evaluate the performance of MetricJ compared to Met-
ricE and MetricM with two sets of data: simulated fingerprints,
and a large set of real-world data (see Section II).

D. Simulation-based Evaluation

We start with a simulation-based evaluation, using the
dataset described in Section II-D. To evaluate the quality of
the metric, we compare the metric score to the true distance
between the locations at which the fingerprints are taken. We
compute the Spearman correlation [10] between the two values
to obtain a quantitative result. Unlike the widely used Pearson
correlation, the Spearman correlation evaluates the monotonic



(a) MetricE (b) MetricM (c) MetricJ

Fig. 2: Real data-based evaluation of initially proposed vs prior work metrics.

Metric Dataset Correlation Improv. Correlation

MetricJ Artificial 0.91 0.91
MetricE Artificial 0.59 0.94

MetricM Artificial 0.72 0.94
MetricJ Real-world 0.46 0.49
MetricE Real-world 0.31 0.53

MetricM Real-world 0.41 0.54

TABLE I: Summary of Spearman correlation values of original
and improved metrics on our datasets.

relationship and it is then a better fit for non-linear correlation
studies. In addition, the Spearman correlation is proven to be
robust in the sense of being resistant to outliers [10].

From visual inspection of our simulation results presented in
Figure 1, MetricJ is superior to the two related work metrics.
This is confirmed by the correlation scores of 0.59 (MetricE),
0.72 (MetricM) and 0.91 (MetricJ) (see Table I).

E. Real-World Data-based Evaluation

For this dataset (introduced in Section II-C), we do not
have accurate ground truth locations available. Instead, we will
use the distance between the fingerprints based on the third
party’s localization result (which itself is a noisy estimate)
for the performance evaluation. We evaluate around 200, 000
fingerprints located all around Singapore.

As it can be observed in Figure 2, all three metrics perform
much worse than expected on the real dataset. We note that for
MetricJ, a value of 1 should correspond to a small distance,
while for the other two metrics, smaller values mean shorter
distances. For all three metrics, distances of <10m generally
do have expected metric scores, but the Spearman correlation
between distance and score is not very strong: 0.46 (MetricJ),
0.31 (MetricE), 0.41 (MetricM). While MetricJ’s correlation
score is still better than the other two metrics, MetricJ has very
low values even for short distances, and high scores are almost
never reached. Clearly, the performance predicted based on
simulations is not achieved when the evaluation is done using
our real-world dataset. Surprised by those results, we set out
to investigate the cause, and possible mitigations.

IV. ANALYSIS OF METRICJ

We now present our analysis of the causes for the bad
performance of MetricJ on the real data set. We start by

Fig. 3: Jaccard index components: the number of mutually
observed APs versus the total number of APs observed in two
fingerprints that are at most 1 meter distance apart.

analyzing metric scores for fingerprints that are estimated to
be taken at the same locations. We find that MetricJ scores
are low because the actual number of mutually observed APs
is much smaller than expected compared to the total number
of APs observed in both fingerprints.

To confirm that finding, we select 11, 433 fingerprint tuples
that are within respective estimated distance according to the
third-party cloud service of 1 meter or less. We then compute
the numerator and divisor of the Jaccard index and show the
results in Figure 3. Points on the dashed diagonal lines indicate
that both fingerprints contain the same set of observed APs.
We expected to see the same or similar set of APs in both
fingerprints, with diagonal up to a divisor score of 20 (c.f.
Section II-C), and only few cases of divisor scores higher
than 20. Instead, the results show that there are two distinct
clusters: around (7,12) and (14,28). Given the construction of
MetricJ, those clusters would lead to metric scores of around
0.5, although scores of 1 would be expected given the short
distance between the fingerprints. The question is now: why
there are so few APs mutually observed for fingerprints taken
at the same location?

A. Probabilistic Observations of APs

Our hypothesis is that the fingerprint collection process
on the devices suffers from a probability e to miss a nearby
AP completely (in addition to expected RSSI variations).
More formally, e would lead to the following expected ratio
of mutually observed APs versus total APs in the shared
neighborhood:

(a) Probability of mutual observation: Pm = (1− e)2.
(b) Probability of having at least one observation: Po = 1−e2.



This results in the following maximal Jaccard Index MJI
for n APs in the shared neighborhood:

MJI =
Pm ∗ n
Po ∗ n

=
Pm

Po
=

1− e
1 + e

In other words, an effective upper bound for our metric score
depends on e, even if fingerprints are taken from the same
location.

B. Probability e of missing a nearby AP

First cluster. As expressed above, we have identified two
clusters. Our guess is that the cluster around (14,28) is likely
due to the limited cache of 20 best APs per fingerprint.

Second cluster. For the cluster around (7,12), we speculate
that this is due to the limited scanning capabilities of WiFi
chipsets. WiFi nodes scan each WiFi channel for APs for a
limited time (e.g. 120-180 ms). As WiFi APs typically transmit
beacons every 100 ms, channel congestions may cause that
beacons transmitted during the time spent on that channel are
lost due to the likelihood of beacons collisions and hidden
nodes. We leave a more detailed investigation for future work.

Based on the clusterization above, we analyze the real-
world dataset to attempt to give an estimated value of e due
to caching and channel congestion. We compare the number
of APs within a range of 20 meters from two fingerprints
separated by a maximum distance of 1 meter to the total
number of APs present in both fingerprints. The 20 meters
radius we choose corresponds to the breakpoint distance after
which the signal is more likely to suffer from an attenuation
of a higher slope factor due to obstacles.

e =
E(# of APs in FPs of d ≤ 1m)

E(# of APs within 20m)
=

17.16

67.62
= 0.25 (6)

V. IMPROVED METRICS

A. Candidate Metrics

We now present a set of candidate metrics to improve on
MetricJ with regards to imperfect observations of APs, and to
leverage RSSI values. In general, the metric should incorporate
two properties: a) a factor reflecting on similarity in observed
APs in both fingerprints, and b) counterbalance as much as
possible the effect of the previously computed probability e.

We now explore options for both a) and b), leveraging our
insights as presented in Section V-B. In particular, we will
convert the a)-related components of MetricE and MetricM
into factors that range from 0 (for no similarity) to 1 (for
maximal similarity) by imposing a limit on the RSSI difference
for mutually observed APs, and a scaling factor s. In addition,
we will introduce the same b)-related factor for all three
metrics discussed.

Similarity score for mutually observed APs: In MetricE and
MetricM, differences of RSSI values for mutually observed
APs are computed, of which the squared or absolute value
is then summed up. The resulting values are in practice
between 0 and 250 (see Figure 2). We now replace that with

a construction that returns values between 0 and 1 for each
mutually observed AP. Together with the normalization factor,
that will lead to an overall metric score between 0 and 1 (where
larger scores indicate higher spatial correlation). We define that
similarity score for two fingerprints Fa, Fb as follows:

δ(oai, obi) = 1− |RSSIai − RSSIbi|
max(|RSSIai|, |RSSIbi|)

(7)

Counterbalance the effect of the probability e: In MetricJ,
normalization (through the divisor) was based on the size of
the union set of observed APs. As discussed in Section IV,
the observed value of that size (and size of the intersection
set) is biased by e. The idea we adopt limits the number of
considered mutually observed APs for metrics computations.
As the main peak in Fig. 3 is around (7,12), we propose to
set a maximum number of APs, #APs

max = 7 over which the
similarity score defined in Eq. 7 is computed, rather than the
whole set Na ∩ Nb. These #APs

max APs are chosen as those in
Na ∩Nb with the lowest absolute difference of corresponding
RSSIs between both FPs (Fingerprints) |RSSIai−RSSIbi|, we
denote this set as: La,b(#

APs
max)

MetricJ+i (improved MetricJ): In this metric, we extend
MetricJ with the upper bound on the intersection size to
compensate e as discussed above. The resulting metric is:

m(Fa, Fb) =

∑
i∈La,b(#

APs
max)

1

#APs
max

(8)

Here, we choose to represent |La,b(#
APs
max)| as∑

i∈La,b(#
APs
max)

1 to highlight similarities to the other two
improved metrics.
MetricE+i (improved MetricM): The next metric is the
Manhattan distance-based MetricM, improved with our new
similarity function δ(Fa, Fb) and the compensation for the
effect of the probability e.

m(Fa, Fb) =

∑
i∈La,b(#

APs
max)

δ(oai, obi)

#APs
max

(9)

MetricM+i (improved MetricE): The last metric is MetricE
with our new similarity function δ(Fa, Fb) and the compen-
sation for the effect of the probability e.

m(Fa, Fb) =

√∑
i∈La,b(#

APs
max)

[
δ(oai, obi)

]2
#APs

max
(10)

B. Evaluation
We evaluate the metrics with simulated and real data, with

results shown in Figure 5. The Spearman correlation scores are
as follows: 0.49 (MetricJ+i), 0.54 (MetricM+i), and 0.53 (Met-
ricE+i). All correlation results are summarized in Table I. We
conclude that both proposed improvements (similarity score
and e-effect compensation) together improve the previously
discussed metrics, with all three metrics performing similarly
in terms of Spearman correlation.

The Spearman correlation is a good indicator of metrics
performance. However, it does not capture other aspects nec-
essary to compare the proposed metrics, such as the robust-
ness. We introduce robustness as a performance measure in



(a) MetricM+i (b) MetricE+i (c) MetricJ

Fig. 4: Artificial data-based evaluation of improved metrics.

(a) MetricM+i (b) MetricE+i (c) MetricJ+i

Fig. 5: Real data-based evaluation of improved metrics
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Fig. 6: The standard deviation of metrics scores computed
for FPs separated by distances ranging from 1 to 150m (real
measurement dataset).

the sense that for a specific physical distance between FPs,
the corresponding metric score should be as consistent as
possible across different conditions and scenarios. For the real
measurement dataset, we show in Fig. 6 the standard deviation
of metrics scores vectors of size 3000 for each distance from
1 to 150 meters with a ±0.1 m margin. Naturally, the lower
this standard deviation is, the more robust is the corresponding
metric. Although the 3 metrics compared in this Section show
more or less similar Spearman correlation coefficients, Fig. 6
demonstrates that MetricM+i is the most robust one compared
to MetricE+i and MetricJ+i.

VI. CONCLUSION

In this work, we discussed proximity metrics for WiFi
fingerprints that do not need external sensors and do not have
access to the locations of APs. Using real data from a large
dataset as well as simulated data, we have shown that metrics
proposed in related work do not perform as expected in noisy
real datasets, and we have proposed a range of alternatives.
We have also shown that access points might be missed in real
environments with some probability e and proposed an upper
bound for metric scores as a function of e. Based on those
insights, we have improved our proposed metrics. The best
performing metric (MetricM+i) has resulted in a Spearman

correlation score of 0.54 with the real dataset and 0.94 with
the artificial one.
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