Legacy-Compliant Data Authentication
for Industrial Control System Traffic

John Henry Castellanos(), Daniele Antonioli, Nils Ole Tippenhauer,
and Martin Ochoa

Singapore University of Technology and Design, Singapore, Singapore
{john_castellanos,daniele_antonioli}@mymail.sutd.edu.sg,
{nils_tippenhauer,martin_ochoa}@sutd.edu.sg

Abstract. Industrial Control Systems (ICS) commonly rely on unen-
crypted and unauthenticated communication between devices such as
Programmable Logic Controllers, Human-Machine-Interfaces, sensors,
and actuators. In this work, we discuss solutions to extend such environ-
ments with established cryptographic authentication schemes. In partic-
ular, we consider schemes that are legacy compliant in the sense that
authentication data is embedded as additional payload for domain spe-
cific protocols, for example the industrial EtherNet/IP protocol. To that
end, we propose a selective protocol (that signs every critical packet
sent) and a protocol that aggregates groups of packets based on real-time
requirements and the available throughput, for various realistic hardware
configurations. We evaluate our analysis by implementing an authenti-
cated channel in a realistic Water Treatment testbed.

Keywords: Industrial Control Systems - Authentication - Network
security

1 Introduction

Industrial Control Systems (ICS) commonly rely on unencrypted and unauthen-
ticated communication between the industrial devices such as Programmable
Logic Controllers (PLC), Human-Machine-Interfaces (HMI), sensors, and actua-
tors. The use of cryptographic schemes in such devices is often hindered by their
long lifetime, compatibility issues, low processing power of the embedded devices,
and real-time requirements in the communication [9]. Most common industrial
communication protocols do not feature any built-in capabilities for authen-
tication (e.g., Modbus/TCP, EtherNet/IP). In the past, critical infrastructure
control networks’ were isolated from the office and corporate networks, and thus
malware and other advanced attacks did not pose a realistic threat to such con-
trol networks.

Nowadays, with the increased connectivity to general IT infrastructures such
as a LAN, and the Internet itself, attacks such as the well-known Man-in-the-
Middle between ICS devices are more realistic [29]. For ICS communications,
© Springer International Publishing AG 2017

D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 665-685, 2017.
DOI: 10.1007/978-3-319-61204-1_33

666 J.H. Castellanos et al.

message integrity is paramount, while confidentiality of messages exchanged is
less important. In particular, if an attacker can alter the values of the sensors or
the commands being sent to the actuators, he could effectively alter the control
of the ICS and potentially cause the malfunctioning of the physical system.

A number of works (e.g., [2,3,5,23,26,31] to name a few) highlight the impor-
tance of securing the networks of ICS. Most of them also remark that by using
cryptography a non negligible overhead can be introduced, and that such systems
usually have strict timing constraints. However, to the best of our knowledge,
no detailed analysis on cryptography-enabled authentication has been reported
so far for ICS under realistic constraints. In particular, data in ICS is also often
passing through intermediate gateways and other industrial network appliances.
For that reason, the solution must be legacy-compliant (which can prevent solu-
tions such as TLS encapsulation).

In this paper, we explore the application of well-known cryptographic prim-
itives to verify authenticity of communication between devices in modern ICS,
embedded as payload in legacy industrial protocols. In particular, we are inter-
ested in solutions that would either be feasible to implement in constrained
legacy devices, or could be provided by low-cost additional devices. The focus
of the paper is to detect manipulations of legitimate traffic by the attacker, and
the presence of new messages introduced by the attacker. If confidentiality is
required, an additional suitable encryption scheme should be used. In addition,
the discussion of consequences of successful detection of message manipulation
attacks is out of scope of this work. The mitigation to such an attack is a subject
on its own, since in general one cannot simply drop incorrectly signed packets:
on one hand, even a single missing packet could have unforeseen consequences in
controlling physical processes, on the other hand if packets are dropped attackers
could easily implement denial of service attacks [15].

In order to maximize the efficiency of legacy-compliant authentication while
preserving security, we propose a basic authentication protocol that signs a sub-
set of critical packets. This is in contrast to closely related work, that usu-
ally focuses on authenticating all of the communication between nodes in ICS
[18,25,28,33]. In addition, we propose a second protocol that aggregates groups
of packets based on the real-time requirements, network throughput, and the
processor capacity for various realistic hardware configurations. We evaluate our
analysis experimentally in an industrial Water Treatment testbed [11] (Secure
Water Treatment, SWaT) by means of additional network components. How-
ever our protocols can be deployed by controller manufacturers as a firmware
modification of existing Ethernet modules.

We summarize our contributions as follows. In this work we: (a) discuss
design options for legacy-compliant basic authentication protocols in the con-
text of ICS networks; (b) perform an experimental performance evaluation of a
number of cryptographic primitives on several hardware platforms; (c) propose
a novel aggregated authentication protocol, adapted to requirements of ICS; (d)
empirically evaluate the proposed protocol in a Water Treatment testbed.

Legacy-Compliant Data Authentication for ICS Traffic 667

2 Preliminaries

In the following we introduce some fundamental notions on Industrial Control
Systems, and introduce the attacker model and the expected security guarantees
of our solution.

DS Layer 2 - DMz
= Network @ Network) e
= |

SCADA Historian

Firewall

f..r: HMI 2
_lems| [/ ™
[T| il Ei—ll. ______ \switch Layer 1 Network

[[
Process 5 h Process 6 h
PLCS| PLC6| P%

LO Network LO Network

I L L L
Process 1 h Process 2 h Process 3 h Process 4 h
PLCIP PLCIJ PLC3| PLC3J PLC4{ PLC4J

LO Network LO Network LO Network

RIO RIO

Actuators Sensors ~ Actuators Sensors Actuators Sensors Actuators Sensors Actuators Sensors Actuators Sensors

Fig. 1. SWaT network architecture.

2.1 Industrial Control Systems

ICSs are a subset of Cyber-Physical Systems that monitor industrial infrastruc-
tures such as Water Treatment systems, nuclear power plants, smart grids, and
electric power distribution systems [22]. Securing a safety-critical ICS against
malicious attackers is crucial to avoid catastrophic events that may result in
natural disasters, economical crises, and loss of human life. The threat model of
ICS often assumes a strong attacker, the system under attack provides a large
attack surface because an ICS may be vulnerable both to cyber-attacks and
physical attacks. Unfortunately, a combination of cyber and physical attacks can
result in a severe damage of the system even without physical access to the
system, e.g., [2,32].

Figure 1 shows an example of the architecture of an ICS network. The network
is layered to logically separate devices and monitored processes. Compared to a
standard corporate network, an ICS network includes a wider range of devices.
The ICS has to connect several older legacy hardware and new hardware, and it
has to manage software with different capabilities and interfaces. In addition, a
traditional ICS network is expected to have a long life time (e.g., twenty years),
and many of its components are unlikely to change or be upgraded over the years.
That is why the protocols we propose in the remainder of the paper target both
high-end ICS devices (able to tolerate the computation overhead), and low-end
ICS devices (with the introduction of an external module that is able to tap into
the ICS network).

Different industrial protocols have been used in ICS. They evolved from
serial communication networks (e.g., RS-485, RS-232) to bus systems (e.g.,

668 J.H. Castellanos et al.

Fieldbus), and then to Ethernet-based communications such as EtherNet/IP
(ENIP) [6]. ENIP is a modern, object-oriented application layer industrial pro-
tocol, that implements the Common Industrial Protocol (CIP) specifications [24]
over the TCP/IP protocol stack. ENIP can be extended to support custom com-
mands and device profiles, and it provides a native compatibility with traditional
TCP/IP based IT corporate network. It is important to notice that our authen-
tication scheme does not depend on the underlying industrial protocol. We use
ENIP as an example protocol as we have a local Water Treatment testbed that
uses ENIP. However, the same scheme should easily translate to other modern
industrial protocols.

2.2 Security Guarantees

In this work, we discuss solutions to provide authenticity of network traffic for
ICS. The solution is not designed to provide confidentiality, and does not prevent
denial of service attacks. The attacker is assumed to be able to eavesdrop, insert,
drop, and manipulate messages on the network. The attacker does not have
access to pre-shared keys, and he is constrained by polynomial computational
power on the size of the key, where the computational hardness assumption are
simular to the ones proposed in [27].

Moreover, one key observation of this work is that not all packets being
transmitted by nodes in ICS need to be authenticated: in the following we will
discuss (using ENIP as an example) how to select a subset of critical packets
that need to be protected, whereas we argue that other packets are less critical
and do not necessarily need to be authenticated since their manipulation does
not pose a threat to ICS.

3 Traffic Authentication for ICS: The SPA Protocol

In this section we introduce a first efficient protocol to guarantee authenticity of
critical communication in ICS. In addition to providing authenticity, the solu-
tion also needs to integrate well into existing systems. In particular, the solution
needs to fulfill real-time requirements and legacy-compliance integration. Note
that as stated in the previous section, we will use ENIP as a running example
to illustrate our protocol, since it is the protocol used in our evaluation set-
ting. Our idea can be applied to other industrial network protocols (i.e. Modbus
TCP [19] and PROFINET [10]), however the implementation details will vary,
essentially because a signature must be appended to certain packets, which is
easily accomplished in ENIP as we will discuss later.

Our solution must be computationally efficient enough to allow resource-
constrained devices (such as PLCs) to sign and verify packets fast enough. In
particular, the solution should be able to handle high volume traffic loads, with-
out introducing high queuing, and processing delay. We start by proposing a
first solution we called SPA (Selective Packet Authentication). The SPA proto-
col relies on a simple algorithm: we assume a setting where two devices, that

Legacy-Compliant Data Authentication for ICS Traffic 669

want to communicate, possess a common pre-shared key, and we propose to sign
only selected outgoing packets using well-known cryptographic algorithms, such
as authenticated signatures schemes [12,14].

This solution is conceptually simple, however it potentially conflicts with the
real-time constraints outlined earlier. In Sect.4, we discuss our refinement of
this idea, we present a mathematical analysis able to capture the constraints, in
order to guarantee the normal operation of the ICS.

3.1 Legacy-Compliance

ICS often integrate devices that cannot easily be replaced or updated. As a
result, a number of legacy industrial protocols are established that are widely
supported, but do not feature any security capabilities by design. In general, such
protocols allow the reading of distinct memory locations (e.g., in Modbus/TCP)
or tags (in EtherNet/IP) that represent sensor values or similar. We argue that
an upgrade of all such devices in an ICS is costly; therefore an authentication
system needs to impact the existing system as little as possible. In particular,
the use of TLS tunnels to transmit data would not only incur computational
overhead, but could also fail to pass through industrial network appliances or
intermediate gateways. Therefore, we propose to embed the authentication data
as additional payload in the existing industrial protocols. This will ensure that
receivers that are not aware of the authentication scheme can at least process the
normal payload without benefiting from the authentication data. Intermediate
devices that are unaware of the authentication scheme could also just pass along
the authentication data as normal payload. As result, our authentication solution
can be integrated in legacy systems, e.g., by introducing external modules to data
sources, or through firmware modification of Network modules.

3.2 SPA Protocol Description

The intuition behind the SPA protocol is that (a) only a subset of transmitted
messages is security relevant, and (b) selective signing of that subset is more
efficient than signing all messages in the stream. For simplicity, we will refer to
sign as the process of generating a Message Authentication Code using a pre-
shared key for the case of symmetric key cryptography or, a signature using the
counterpart’s public key for the asymmetric case.

Let p be a critical data packet (we discuss how to identify them later in
the context of ENIP). The SPA protocol, shown in Fig. 2, calculates a signature
Sigp{p} of the packet p, generates a new packet p’ = (p, Sig;{p}), and sends it
to B. By using the inverse function Very (where K = k in the symmetric case
or the corresponding public key otherwise), B verifies the authenticity of the
message as p = Veri{Sig,{p}}. Note that the signature scheme Sig guarantees
that a computationally constrained adversary cannot forge a signature (with
high probability).

We note that to prevent replay attacks, the payload should contain a
timestamp or a counter to identify the ENIP session or packet. Therefore, if

670 J.H. Castellanos et al.

an active adversary replays the message in a future ENIP session, the applica-
tion layer will check the nonce and mark it as invalid. On the other hand, since we
do not sign non-critical packets in the data stream (nor e.g., TCP synchronisa-
tion packets) an attacker could manipulate the content of those messages. Such
an attack is easily detected by orthogonal means [7]. By design, ICS systems
will trigger alarms in case of problems in network connectivity. In particular, we
cannot prevent against denial of service attacks by means of authenticity and
such attacks are out of scope.

A. Signature Verification B
__________________ q
N -
1o p
\)i ,

t t t

Fig. 2. SPA protocol overview: p is a critical message that is signed by the signature
module. ¢ is a non-critical message, which is simply forwarded; § is the delay introduced
by authentication and verification.

Real-Time Requirements and Backlogs. 1CS operate under very strict real-time
operation conditions, with maximal critical response time, very high availability
requirements, and low tolerance for high delay or jitter conditions. As described
before, in order to guarantee the authenticity of messages, we authenticate out-
going packets using a Signature module, and verify incoming packets using a
Verification module respectively. We define g(A) as the number of packets gen-
erated by a device in an interval of time A, and s(A) as the rate at which packets
are being signed. As an example, g(A) can be 1000 packets per second if A =1
second, while s(A) generally depends on the processing speed, e.g., 300 packets
per second. Similarly we denote r(A) the number of packets received by a node
and v(A) the number of verifications performed.

In order to be compliant with the real-time requirements of a given system,
essentially one needs to authenticate/verify packets at least as fast at the rate
they are being produced/received, that is g < s and r < v (see Appendix A).

3.3 Application to ENIP-CIP

We now discuss the application of the SPA protocol to Common Industrial Pro-
tocol (CIP) traffic to ensure legacy compliance, leveraging its extension possi-
bilities. SPA payload is given by p = (payload, ENIPsequencenr, ENIPsessionid)
based on a critical ENIP packet from A to B. The ENIP session ID is a randomly
generated 32-bit integer and will serve as a counter as discussed in Sect. 3.2. Note
that although 32-bit is a relatively small search space, in this context we do not

Legacy-Compliant Data Authentication for ICS Traffic 671

rely on it for security, but merely to prevent replay attacks. An attacker still
needs to forge a secure MAC or cryptographic signature to bypass verification,
as we will illustrate in Sect. 5.

When replacing the original p with p’ of SPA, we increase the length of any
packet p that we sign. The packet extension must conform to the ENIP standard.
The structure is defined as follows: Type ID: 0z00cl. Length: size of the signature
specified in Bytes. Data: the signature Sig,{p}.

The device receiving p’ will search for the Type ID 0x00c1, verify the content
of the payload, and then remove the signature. In the case of a mismatch, i.e.,
p # Ver{Sig,{p}} the device will raise an alarm.

Identification of Critical Data. The integrity of messages exchanged in an ICS
system can be protected in different layers of the OSI network stack. We identi-
fied critical data from the pool of CIP services observed in the traffic captures.
In particular, protection is required for data that can affect the normal operation
of the control of a physical process.

The identified critical services are: Read Data (Service 0x4C), Write Data
(Service 0x4D), and Read Tag Fragmented Data (Service 0x52). In Sect. 5, we
discuss in more detail this choice in the context of other CIP services observed
in our Water Treatment testbed. By authenticating critical packets only, we
increase security and minimise the computation overhead.

3.4 Ad-Hoc Protocols vs TLS

We have chosen to focus on ad-hoc protocols at the application layer, rather than
of using TLS [4], for various reasons. Firstly, we want to reduce the computation
overhead, by only authenticating packets that contain critical payloads (such
as commands to actuators and values from sensors). In comparison, while TLS
would sign every packet in a ENIP connection, SPA protocol would only sign
and verify a comparatively small amount of those ignoring packets such as TCP
handshake, EtherNet/IP communication control messages and CIP non critical
service messages, as shown in Fig. 3. We believe that integrity attacks on TCP
handshake and ACK messages can be detected by orthogonal methods. On the
other hand, we want to be backwards compatible with devices that do not sup-
port message authentication, a feature that we achieve by using the extension
capabilities of ENIP. Such a feature would not be achievable by using TLS.

We now discuss performance of SPA vs TLS. Let v the speed in packets
per second that a given cryptographic signature can provide for a given average
packet size. For simplicity we assume that both TCP packets and ENIP packets
are about the same size, although in practice TCP will be slightly bigger. Then
if the number of critical packets is ¢, then the actual throughput on the total
of generated packets g will be higher, since we only need to sign c¢ - g. Thus,
effectively we will increase the tolerance on the generated packets g by a factor
of ¢, allowing a maximum of ? packets per second. This is illustrated in Fig. 3.

672 J.H. Castellanos et al.

SPA

Pk/s

Min Pk/s required for
v/e CPS correct operation |

0.0% 20.0% ¢ 40.0% 60.0% 80.0% 100.0%
Percentage of critical packets to sign

Fig. 3. The y-axis represents the tolerance to a network constraint’s in packets/second.
The z-axis represents the percentage of critical packets authenticated.

Ezample. In practice, the amount of sent and received packets is symmetric, as
we will discuss in the following sections. In addition, the signature and verifica-
tion time are similar. Let g = r be 10 packets per second, and let ¢ = 0.4. Let
s = v be 10° packets per second. In this case, cryptography-enabled authenti-
cation does not create backlogs neither for TLS (signing every packet) nor for
SPA since g + r = 2-102 < s + v = 2-10°. This example is based in the
real-time communication constraints of SWaT and the signature and verification
rates for SHA-256 based HMAC on a virtualized ARM similar to the one used
in the SWaT PLCs. A deeper analysis and discussion is presented in Sect. 5.

In sum, the proposed SPA protocol has both advantages and drawbacks in
terms of the authentication goals. We briefly summarized them as:

Advantages. The protocol is conceptually simple and easy to implement and
to integrate into legacy systems by means of an external component as we will
discuss in Sect. 5. Moreover, it gives fine-granularity detection capabilities, since
it can be pointed out which packet was altered in transit with almost instanta-
neous detection times. Additionally, by using the extension capabilities of ENIP,
the protocol is backwards compatible with devices that do not implement a
verification module.

Disadvantages. The main disadvantage of the SPA protocol is that although it is
designed to sign critical packets only, the overheads might still be unacceptable
for devices and/or algorithms with low signature/verification rates. This is the
main motivation for proposing an extended protocol, as we will discuss in the
following section.

4 Extensions: The ASPA Protocol

The SPA protocol presented in the previous section and the constraint analysis,
give us guidelines to determine whether the scheme is feasible, depending on

Legacy-Compliant Data Authentication for ICS Traffic 673

the packet generation rate, packet size, and signature algorithm performance on
links that have a reliable connectivity. However, there exist two limitations to
the practical application of this protocol: first, we would like the protocol to be
used even in scenarios where (for legacy or cost reasons) the underlying hardware
is not as fast as necessary (i.e. in the sense of the signature rate s vs generation
rate g as discussed in the previous section), and second, even faster hardware
might be insufficient for stronger signature algorithms, that are computationally
more expensive.

In particular, strong signature algorithms would enable the use of asym-
metric cryptography, that has several advantages in terms of key management.
For example, the use of public/private keys in asymmetric cryptography allows
dynamic addition of new devices to the system if centrally signed certificates are
used. In addition, the compromise of a single device will only expose a single
private key, instead of exposing a secret key shared between many devices.

Our protocol can be extended to deal with more expensive cryptographic
algorithms and slower CPUs. The intuition behind this extension, called ASPA
(Aggregated Selective Packet Authentication) is the following: typically, authen-
ticated signature schemes are relatively inefficient for short amount of data, but
they get more efficient for large amounts of data. Thus, on average, it is usually
faster to perform an aggregate signature over multiple packets instead of signing
them individually, and as a result the aggregate signature increases the signing
rate s.

4.1 The ASPA Protocol

Let P(T') be the sequence of outgoing packets in the time interval T. Let n
be the expected number of packets in this time E[|P(T)|] = n such that the
typical set is P(T) = {p1,...,pn}. In the ASPA protocol, shown in Fig.4, the
Signature module simply forwards packets p; to B, and in addition accumulates
their payload in a queue. After time T has passed, it signs the accumulated
queue, and sends the aggregated signature together with the sequence number
of the first and the last element of the queue. The Verification module will
forward all received messages to the original destination (without immediately
validating a signature), and in addition store the received messages in a queue

A Signature Verification B

t t t 3

Fig. 4. ASPA overview. p; are critical messages which are aggregated. ¢ is a non-critical
message, thus not authenticated. § is the delay introduced by authentication.

674 J.H. Castellanos et al.

until the aggregated signature arrives. Then, the verification module can check
whether the signature matches the content of the respective packets received. If
the Verification module cannot validate the signature, an attack was detected.
For example values of T and P(T'), we refer to Sect.5. We note that the ASPA
protocol relies on lower layers (i.e., TCP) to ensure that no message gets lost
during transmission. That will ensure that the verification and signature modules
always have the same view of exchanged messages.

Security Trade-Off. In the first proposed protocol, an attack can be detected
as soon as a spoofed packet with an invalid signature is received. In the ASPA
protocol, we can only detect an attack after T' time has passed, and an invalid
signature is received. Depending on the value of T, and the particular ICS sys-
tem, this could be problematic (or not). This is related with the problem of ICS
resilience and reaction time in case of failure, and therefore we see it as orthog-
onal. For most practical applications (see Sect.5), the values of T will be small
and thus the reaction time will not differ much from the reaction time of the
first protocol.

4.2 Performance Advantage

Symmetric Authentication. Let §(size, cpu, alg) be the time needed to sign a
packet of size size with algorithm alg on CPU cpu. The signature scheme is
typically based on HMAC and an underlying hash function (such as SHA-256).
In that case, there is a constant b such that 6(b, cpu, alg) =~ 0(b, cpu, alg) for

b < b. However, for B > b: §(B, cpu, alg) = 6(b, cpu, alg) + [%1 - ¢ where ¢ <

5(b, cpu, alg). Therefore, given an expected packet number of a certain expected
size, it is more efficient to sign multiple packets instead of just one, in terms of
the rate per interval s. As we will discuss in the next section, the optimization
value converges after a certain number of packets, as is to be expected.

Asymmetric Authentication. In the case of signatures based on asymmetric cryp-
tography (such as ECDSA [12]), typically the payload is first hashed and then an
operation involving the private key is performed on the digest (such as decryp-
tion). Since the cryptographic operation is orders of magnitude slower than the
hashing operation (i.e., hundreds of ms vs. us in some cases), signing multiple
packets takes almost as long as signing a single packet.

The above described effects on the signing rate s can be observed in the
plotted values for different algorithms and values of n of Fig.6. Note that a
similar discussion about the signing rate s and the packet generation rate g,
presented in the previous section, also applies for the ASPA protocol. In practise,
a device might have active connections (TCP streams) to m devices at the same
time. As result, there will be m queues Qiyi, possibly signed with different keys.
In that case, the constraint becomes V; ¢; < s;, where g = 2111 g;- In the
case of ICS such as SWaT, devices typically communicate only with one or two
devices (e.g., m = 2). For the sake of simplicity we assume a single queue in the
following.

Legacy-Compliant Data Authentication for ICS Traffic 675

----- CPS constraints
D
— 0% A
- et : s TLS
<
o 60%
v—l_'_'_'_'_Pd_
l—'-'‘
80%
9 i
= 100%
e R AP A S
(200 400 600 800 1000

Aggregated Packets

Fig. 5. The x-axis represents chunks of packets, y-axis tolerance in terms of packets per
second. The step functions represent different percentages of critical packets, segmented
lines various CPS communication constraints. CPU power and packet size are constant.

ASPA vs TLS. In Fig. 5, we illustrate the general case comparison against TLS.
Let v = % the number of packets per second an ideal implementation of TLS
could sign. By using ASPA to aggregate n packets we can tolerate approximately:
v = m packets per second, which will be faster than v and will converge

to a constant since: lim, Ty T v We will discuss empirically this
phenomenon in the evaluation section for various hardware configurations.

Example. Let p = 7 be 10% packets/second as in the previous example (as
observed by us in SWaT). Let s = v be 300 packets/second using the SPA
protocol of the previous section and ECDSA and a Raspberry Pi3 (for more
details see Sect.5). In that case, cryptography-enabled authentication clearly
causes backlogs since g +7 = 2-10% > s +v = 600. As discussed above, signing
one packet takes almost as much time as signing multiple packets, and then we
can implement the ASPA protocol by accumulating chunks of 50 packets (for
T ~ 30ms), thus augmenting s to about 1,5 - 10*s packets per second. This
implies a minimum reaction time to attacks of about 60 ms.

In sum, the ASPA protocol improves the signing and verification rates per
packet (s and v), while at the same time providing good reaction time.

Advantages. The ASPA protocol is useful in situations where signing each packet
individually is not feasible due to slow hardware or constraints of the ICS net-
work. In particular, it offers a significant advantage when signing multiple pack-
ets with ECC based authentication. The ASPA protocol can be used selectively
for critical messages (as in the SPA protocol). Alternatively, it could be used to
provide delayed authentication for all messages, as the amount of data included
in the aggregated signature has a negligible impact on the overall time of creating
the signature.

676 J.H. Castellanos et al.

Disadvantages. The coarse granularity of the authentication potentially can
delay reaction times to attacks, depending on the size T of the signing window.
However in our evaluation we have found that the ideal window for authenti-
cation is a few dozens of packets for most signing algorithms/hardware, which
allows for a fast reaction time in practice. In our experience, actual attacks
require a relatively long interaction with the system in order to influence its
physical state. However, we stress that the subject of reaction to attacks is out
of the scope of this paper and is left for future work.

5 Validation

In this section, we use a real SWaT [11] to obtain realistic examples of real-time
constraints. We investigate the amount of critical traffic shared between devices
in the network, in order to approximate the expected number of packets per
time interval, and the expected size of those packets. Furthermore, we bench-
mark symmetric and asymmetric signature algorithms for a variety of hardware
platforms, and discuss the feasibility of their implementation with respect to
the constraints derived in the previous sections. We use standard algorithms
such as SHA (instead of light-weight algorithms specifically designed for embed-
ded systems) to allow better comparison against TLS. When using light-weight
algorithms, the presented numbers are expected to improve.

5.1 SWaT

SWaT [11] (see Fig.1) consists of an ICS with a process made up of six stages.
In a nutshell, the process begins by collecting the incoming water in a tank,
then it performs a chemical treatment stage, it filters the treated water through
an Ultrafiltration (UF) system. Afterwards, the water is de-chlorinated using
a combination of chemicals and Ultraviolet lamps, and then fed to a Reverse
Osmosis (RO) stage. A backwash process cleans the membranes in UF using
the water produced by RO. The cyber portion of SWaT consists of a layered
communications network, PLCs, HMIs, SCADA, and a Historian.

The validation focuses on benchmarking integrity, and authenticity controls
in the plant network, that connects the PLCs, the HMI and the SCADA system.
The network is using the EtherNet /TP industrial protocols on top of an (Ether-
net based) TCP/IP network. We performed several network capture by setting
up a mirroring port on the plant network industrial switch. From those cap-
tures we identified ENIP-CIP communications among 21 hosts, through implicit
and explicit messages. Implicit messages (UDP/2222) are used in our plant for
keep-alive signals, while explicit messages (TCP/44818) are used for configuring,
monitoring and controlling the plant stages. The plant performs its communi-
cation to a rate of 16.000 ENIP-CIP messages per second on average over all
stages. About 14,3% of ENIP-CIP connections belong to UDP /2222, and the
rest 85,7% to TCP/44818. We can split TCP connections between TCP session
traffic (42,7%), and CIP explicit messages (42,9%).

Legacy-Compliant Data Authentication for ICS Traffic 677

We focused on CIP explicit messages, and we tried to extract a subset of CIP
services that deals with critical data. Manipulation of those services could affect
the state of the controlled physical process. We selected the following services as
critical: Read Data (Service 0x4C); Write Data (Service 0x4D); Read Tag
Fragmented Data (Service 0x52).

Read Data and Read Tag Fragmented Data. CIP services are classified as critical
data since an attacker might rise a fake alarm in the SCADA system or he might
hide a safety-related event modifying its data on the fly. The Write Data CIP
service is classified as critical because an attacker might directly modify the
behavior of actuators pushing data into PLCs. By selecting CIP services with
critical data, our proposal only signs around 42% of SWaT’s traffic (including
TCP and UDP), avoiding processing and bandwidth overheads for non-critical
data CIP services such as the Get all attributes service.

We performed an in-depth analysis of the capture file in order to estimate
the frequency, and the size of the packets received per second, by an arbitrary
testbed’s device. Table1 shows a summary of the results targeting PLC2. We
decided to use PLC2 as an upper bound because we estimated that it is the
“busiest” device in our testbed. As you can see from the table, PLC2 sends
1127 packets per second on average, and it receives 1168 packets per second on
average.

Table 1. Frequency and size of critical packets shared by host PLC2 to others.

Sent Received
ENIP message | Request | 561 Pk/s 607 Pk/s
uw=063B, 0=3.36 | u=69B, 0 =5.32
Response | 566 Pk/s 561 Pk/s
pw="75B, 0 =58.16 | n=86B, 0 =9.42
Total Pk/s 1127 1168

5.2 Hardware Benchmark

In order to evaluate the efficiency of the underlying primitives, and therefore the
packet signing rate s(t, cpu, alg), we used different types of hardware platforms.

Controllino is an open source Hardware PLC, based on Arduino Mega 2560
board, with an ATmega2560 CPU (16 MHz), 256 KB of flash memory, an Eth-
ernet connector, and two serial interfaces. For our experiments, we used the
spaniakos cryptographic library [8]. ARM We used the QEMU emulator with
the following settings: ARM926EJ-S rev 5 processors family at 530MHz, 256 MB
of RAM, Debian 3.2.51 32 bit Operating System, and the libgcrypt-1.6.5 cryp-
tographic library. Raspberry Pi is a single-board computer of credit card-size.
It was initially developed for educational purposes, but because of its low energy

678 J.H. Castellanos et al.

consumption and low cost, it has become into a popular multipurpose hard-
ware. We choose it as a possible hardware to implement the authentication and
integrity mechanism. The characteristics of the Raspberry Pi model 2 (RPi2)
are: Quad-core ARM Cortex-A7 processor at 900 MHz, 1 GB of RAM, 4 USB
ports, 40 GPIO pins and an Ethernet port. The cryptographic library used was
again libgerypt-1.6.5 [17]. PC We used a workstation with the following spec-
ifications: Intel Core i5-5300U processor at 2.30GHz, 3 GB of RAM, Xubuntu
15.10 64 bit OS, and libgerypt-1.6.5 as cryptographic library.

Table 2. Benchmark of HMAC-SHA256 and ECDSA signature process for different
packet sizes over 5 types of hardware (rounded values). Times are in us.

HMAC - Time
Size | Controllino | ARM RPi2 | RPi3 PC
64B |2.2-10% 76 53 15 2
128B 3.3 -10* 78 58 16 2
256 B | 5.5 - 10 84 69 18 3
512B| 1-10° 117 89 32 4
1KB |1.8-10° 171 130 35 6
2KB |3.6-10° 252 211 58 10
4KB | 7-10° 474 374 104 18
ECDSA - Time
4KB | N/A |1.5-10° | 1-10° | 3.2-10" | 3.1-10°

Table 3. Benchmark of performance of HMAC-SHA256 and ECDSA authentication
for different packet sizes and hardware. Average size per packet 73 Bytes from Table 1.

HMAC - Average Pkt/s

Size | Contr. | ARM RPi2 RPi3 PC
64B |40 1.1-10* | 1.6-10* |5.8-10* | 4.4-10°
128 B |53 2.2-10*| 3-10%|1.1-10°/8.8-10°
256 B | 64 4.2-10*| 5-10*/1.9-10°|1.2-10°
512B | 70 6-10*7.9-10*2.2-10° 1.7-10°
1KB |78 8.2-10%1.1-10°| 4-10°|2.3-10
2KB |78 1.1-10% | 1.3-10° |4.8-10° | 2.8-10°
4KB |80 1.2-10° | 1.5-10° | 5.4-10°| 3-10°
ECDSA - Average Pkt/s

AKB N/A [3.7-10%|5.6-10% 1.7-10° 1.8-10"

We also benchmarked the elliptic curve based ECDSA signing standard. As
discussed previously, the cryptographic operation dominates the execution time

Legacy-Compliant Data Authentication for ICS Traffic 679

of the hashing component of the algorithm. This makes the times for signing
payloads of up to 4KB almost identical to small payloads of 32B. The results
are reported in the last row of Table 2. The resulting s for ASPA for aggregated
signatures of about 58 packets (4KB) is reported in Table 3.

5.3 Discussion

We now provide a summary of our empirical results using different hardware
platforms and cryptographic algorithms combination over our SWaT. In Table 4,
we compare the SPA protocol (first two columns) with the ASPA protocol for
n = 58 packets. As we can see, with a processor such as the one in the Controllino
(16MHz), it is infeasible to cope with the real-time requirements of the SWaT
networks for all algorithms considered. As shown in Fig. 6, and taking as reference
our plant constraints, a symmetric signature is supported by most hardware. On
the other hand, ECC signatures are possible in Raspberry Pi2, Pi3 and PCs
thanks to our extension.

From a communications cost perspective, a signature in HMAC would add
an overhead of 28% in size for an average ENIP packet, while ECDSA would
add about 57%. Since we are only signing critical data, which corresponds to
42% of total traffic, our overhead in bandwidth will be 12% and 24% for HMAC
and ECDSA respectively.

In sum, we have shown that in some cases, there is an advantage on using
aggregation and selectiveness over traditional authenticated tunnels in terms
of efficiency. Although we have shown an example for a concrete testbed and
some hardware configurations, the possible configurations in practice could vary

107

®-e Controllino
[S S T e 1 | *-* ARM-HMAC
et *—+ ARM-ECDSA
Wk &-4 RPI2-HVAC
e bRttt ket sttt A =1 | a—A RPI2-ECDSA
o m-m RPI3-HMAC
i TS Rk PP PPTFREEE: T PP REEEEE 4| |m= RPIZ-ECDSA
S SE +-+ PC-HMAC
4 R +—+ PC-ECDSA
Fi S —
&
o 101Hk g
g
K] —— |
] /
5w / o s Min PKss required for
7[— T busiest PLC in Testbed
10% ,'/ /;/ —
o8 .
o,
uf
10! ",ﬂ
1
10"
0 20 10 60 80 100 120

Aggregated Signature

Fig. 6. ASPA performance on various hardware. PLC2, as the busiest, requires 1000
Pk/s for implementing a multi-link authentication process, y-axis is in log scale.

680 J.H. Castellanos et al.

Table 4. Feasibility of algorithms vs. hardware in the SWaT. Slow hardware does not
tolerate the minimum required signing rate even for ASPA. However, thanks to ASPA
we can use RPi2, RPi3 and PCs to implement ECC based authentication.

Sequential Parallel

HMAC | ECC |HMAC- |ECC- | HMAC | ECC | HMAC- | ECC-

ASPA | ASPA ASPA | ASPA
Controllino | x X X X X X X X
ARM v X v X v X v X
RPi2 v X v v v X v v
RPi3 v X v v v X v v
PC v X v v v X v v

highly. For instance, in a full scale water plant the number of sensors and actu-
ators could be one order of magnitude higher (g = 10%), whereas the available
hardware could range between the Controllino (16 MhZ) and the ARM processor
(500 MhZ). Moreover, the underlying cryptographic algorithm could also vary,
thus affecting the concrete performance.

Implementation in SWaT. We have successfully tested the proposed approach
in a link between two PLCs of SWaT using Raspberry PIs and summarize our
implementation efforts in Appendix B.

6 Related Work

In [23], the authors analyze different attacks on PLCs and several protection
techniques. The authors state that the bulk of the security issues in ICS is the
lack of security in the network communications. A public key based authentica-
tion protocol is proposed. However, the authors mention that their techniques
could degrade the performance of the system, and they do not provide any fur-
ther analysis.

A detailed analysis on cryptography-enabled authentication is reported
in [31]. The authors analyze the security of electric power grids and identify
authenticity and integrity as the most important security properties after avail-
ability. Some constraints on the message delays are considered during the analysis
based on the expected message frequency as discussed in industrial standards.

In [1], the authors discuss integrity, authenticity, and authorization policies
of ENIP and CIP. Two security profiles (providing integrity and confidential-
ity) for the ENIP are described and two for CIP (providing authorization and
integrity) are proposed as a future extension. Authors define security profile as a
set of well-defined capabilities to facilitate device interoperability, and end-user
selection of devices with the appropriate security capability. In particular, the

Legacy-Compliant Data Authentication for ICS Traffic 681

CIP authorization profile will provide secure communications between CIP end-
points, to ensure device and user authenticity. Authors describe ENIP over TLS
(for TCP-based communication) and DTLS (for UDP).

Authors propose to implement confidentiality and integrity checks between
paired devices called SCADA Cryptographic Modules (SCM) [33]. They are fea-
tured with two ports (plaintext and ciphertext). While it receives plaintext mes-
sages from a device through the plaintext port, it encrypts the message using
AES and send it to its remote SCM through the ciphertext port. The message
includes a MAC code (HMAC-SHA-1 or CBC-MAC) for integrity verification.
In [28], authors propose a bump-in-the-wire solution to add security features such
as Data privacy and authenticity to ICS communication. The solution suggests
adding two devices (each per peer) into the communication channel (YASIR
transmitter and YASIR receiver). YASIR Transmitter encrypts the message
using AES-CTR, and attach an HMAC-SHA-1 signature. A YASIR Receiver
decrypts and checks the message’s integrity. In the case of integrity violation,
YASIR Receiver adds an error byte to the frame; it guarantees that destination
device discards the final message.

In IP-based communications, authors at [18] introduce a DNP protocol mod-
ification. They propose to assure confidentiality using DES cryptographic prim-
itive and Integrity-Authenticity with HMAC-MD5-96 or HMAC- SHA-1-96.
Their work suggests a change in the DNP’s data structure. It could thwart
their adoption by industry. Recently, researchers create a new MODBUS secu-
rity development module (NMSDM) [25] that replaces MODBUS message. They
propose to use cryptographic algorithms such as RSA, AES and SHA-2 to guar-
antee security properties as confidentiality, integrity, authentication and non-
repudiation. Their proposal is to add a cryptographic buffer on top of PDU,
as part of the TCP payload. Like ours, it allows adding security properties to
the communication without modifying the protocol by itself. Both works [18,25]
search to protect every message in an ICS, and computing overhead of crypto-
graphic implementation are not taken into account.

In automotive applications, authors at [21,30] present authentication tech-
niques called CANAuth and LeiA for CAN bus protocol. Similarly to ICS, CAN
bus systems relies on hard real-time constraints. The authors shows that state of
the art authentication mechanisms for broadcast networks cannot be used due
to time (and storage) constraints. LeiA and CANAuth, however, are specifically
designed for CAN bus systems. A low encryption overhead is also of paramount
importance in Wireless Sensor Network (WSN), e.g., [13,20]. This is mainly due
to bandwidth, latency and energy cost introduced by encryption. Solutions such
as [13] provide authentication, but are not analyzed in the context of real-time
constraints.

To the best of our knowledge, we are the first to propose the aggregated selec-
tive packet authentication protocol in the context of ICS. The idea is inspired
by a delayed authentication scheme for GPS proposed in [16].

682 J.H. Castellanos et al.

7 Conclusions

In this work, we discussed the introduction of efficient legacy-compliant authen-
tication in ICS networks. By design, our protocols are backward compatible with
devices not implementing them, as they transmit authentication data as payload
in legacy industrial protocols.

We have shown that with the advent of inexpensive and fast hardware (such
as the Raspberry Pi), it is feasible to enhance legacy plants with constraints
similar to the ones of SWaT with authentic channels for strong signature algo-
rithms with simple protocols. However, introducing state of the art asymmetric
algorithms (which are advantageous from the key management point of view),
or implementing our solution in slower hardware requires careful performance
trade-offs. In future work, we plan to compare the real-time constraints of SWaT
with constraints found in other ICS test-beds (i.e. smartgrid).

A Appendix: Real-Time Requirements and Backlogs

The delay produced by the signature module can be represented as a queue of
packets pending to be signed after a time interval A: Q3 = g(A) — s(A). We
assume an empty queue at the beginning of the time interval A. To avoid an
avalanche effect on the packet queue Qi the queue must remain below a certain
constant threshold C: ¥V A. Q% < C. In particular, since A is arbitrary C' = 0
(ie., V A. Q3 < 0) and thus: V A. g(A) < s(A). Similarly, if r(A) is the number
of expected packets in a time interval A, then the number v of verified packets in
this interval must be v(A, cpu, alg) > r(A) to avoid backlogs of the verification
queue QY.

s(A) depends not only on the time but also on the algorithm used, the CPU
capacity, and the size of the packets. In a fraction of time A, the device will
produce not only packets at different rates, but will also nondeterministically
produce packets of different sizes. To simplify our analysis, and without loss
of generality, we thus set A = 1s, and s(cpu, alg) the rate at which packets
of a certain constant expected size can be signed using a certain cpu and a
given signature algorithm alg. We use s,v,g and r to abbreviate the rates per
second of the signing, verification, outgoing (or generated) and incoming packets
respectively.

Parallel versus Sequential Signature and Verification. We are assuming an archi-
tecture where network communications are handled by dedicated hardware. This
avoids sharing the main device CPU (such as the main PLC computing unit),
which is busy computing other control and communication related tasks. In
practice this is usually the case, since communications are often handled by a
dedicated network module. For a parallel implementation of the protocol, where
the signature and verification components have at least a single core each, then
we have effectively two queues that we can consider separate, Qi and QX. Oth-
erwise, for a sequential implementation of the protocol, an incoming packet that

Legacy-Compliant Data Authentication for ICS Traffic 683

needs to be verified has to potentially wait until an outgoing packet is signed; and
vice versa, an outgoing packet has to wait until a verification is finished. We have
thus the constraints: ¥ A. Q% < C A QY% < €’ which we can simplify by consid-
ering a single queue Qa = Q3 UQY = (9(AQ) — s(AQ)) + (r(A) —v(AQ)) < C+C".
As above, C'+ C’ = 0 and thus: g(A) + r(A) < s(A) + v(A). In other words,
the rate of signature and verification in a time interval has to be faster than the
amount of packets sent and received in that same time interval.

B Appendix: Authenticated Link Using Raspberry Pi

We used two (paired) Raspberry Pi3, (as shown in Fig. 7) each with two Ethernet
adapters. We choose a link between two PLCs in our SWaT to perform the test.
The devices were configured as Ethernet bridges and placed as physical Man-in-
the-Middle over the link. This choice was motivated because the source code of
the Network Adapter in the SWaT was unavailable to us (as such proprietary
code is confidential), and we could not directly implement our solution without
additional hardware. However, a vendor could easily deploy our solution.

Once connected, the devices pas-
sively listen to packets from and to the
PLCs. When a critical-data packet
is identified, it is captured and the
ENIP payload is signed with HMAC-
SHA256 algorithm using a pre-shared
key. The concatenation of the cap-
tured packet and its signature is
injected back into the communication
channel.

Similarly, the remote Raspberry
Pi3 is placed as a verification mod-
ule in front of the destination PLC. Fig. 7. Raspberry Pi3 connected between
Once the verification module identi- PLCs.
fies a packet coming from its counter-
part, the packet is analysed looking for an attached signature, the signature
is extracted and verified against the ENIP payload using HMAC-SHA256 algo-
rithm with the pre-shared key. The packet is converted back to its original version
and it is delivered to its destination.

We configured four additional variables in the PLCs to store information
about the authentication processes: Signed messages: Number of signed messages
by its cryptographic module; Checked messages: Number of signed message cor-
rectly verified by its cryptographic module; Wrong-signature messages: Number
of signed messages which signature does not correspond to its payload detected
by its cryptographic module; No-signed messages: Messages with critical data
from a peered host with no-attached signature detected by its cryptographic
module.

684 J.H. Castellanos et al.
References
1. Batke, B., Wiberg, J., Dube, D.: CIP security phase 1 secure transport for Ether-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

net/IP. In: ODVA Industry Conference (2015)

. Cérdenas, A.A., Amin, S.M., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.S.: Chal-

lenges for securing cyber physical systems. In: Workshop on Future Directions in
Cyber-physical Systems Security, DHS, July 2009

Céardenas, A.A., Baras, J.S.: Evaluation of classifiers: practical considerations for
security applications. In: AAAI Workshop on Evaluation Methods for Machine
Learning (2006)

Dierks, T.: The transport layer security (TLS) protocol version 1.2 (2008). https://
www.ietf.org/rfc/rfc5246.txt

Fletcher, K.K., Liu, X.: Security requirements analysis, specification, prioritization
and policy development in cyber-physical systems. In: Secure Software Integration
Reliability Improvement Companion (SSIRI-C), pp. 106-113 (2011)

Galloway, B., Hancke, G.: Introduction to industrial control networks. Commun.
Surv. Tutor. 15(2), 860-880 (2013). IEEE

. Gomes, N., Mattos, L.: Attacks detection based on IP and TCP protocols violation.

Int. J. Forensic Comput. Sci. 1, 49-56 (2006)

Hash libraries for arduino. http://spaniakos.github.io/Cryptosuite/

Igure, V.M., Laughter, S.A., Williams, R.D.: Security issues in scada networks.
Comput. Secur. 25(7), 498-506 (2006)

P. Inc.: Profinet and it. Technical report, PROFIBUS Nutzerorganisation e.V.
(2008)

iTrust: Center for Research in Cyber Security. Secure water treatment test-bed.
http://itrust.sutd.edu.sg/research /testbeds/secure-water-treatment-swat/
Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36-63 (2001)

Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture
for wireless sensor networks. In: Proceedings of the International Conference on
Embedded Networked Sensor Systems, SenSys 04, pp. 162-175. ACM (2004)
Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message authen-
tication (1997). https://www.ietf.org/rfc/rfc2104.txt

Krotofil, M., Cardenas, A.A., Manning, B., Larsen, J.: CPS: driving cyber-physical
systems to unsafe operating conditions by timing DoS attacks on sensor signals.
In: Proceedings of the Computer Security Applications Conference (ACSAC), pp.
146-155. ACM (2014)

Kuhn, M.G.: An asymmetric security mechanism for navigation signals. In:
Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 239-252. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30114-1_17

Gnu cryptographic library. https://www.gnu.org/software/libgerypt/
Majdalawieh, M., Parisi-Presicce, F., Wijesekera, D.: DNPSec: distributed network
protocol version 3 (DNP3) security framework. In: Elleithy, K., Sobh, T., Mah-
mood, A., Iskander, M., Karim, M. (eds.) Advances in Computer, Information,
and Systems Sciences, and Engineering, vol. 3, pp. 227-234. Springer, Dordrecht
(2007). doi:10.1007/1-4020-5261-8_36

Modbus-IDA. Modbus messaging on tcp/ip implementation guide v1.0b. Technical
report, Modbus Organization (2006)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Legacy-Compliant Data Authentication for ICS Traffic 685

Nie, P., Vdha-Herttua, J., Aura, T., Gurtov, A.: Performance analysis of HIP diet
exchange for wsn security establishment. In: Proceedings of the ACM Symposium
on QoS and Security for Wireless and Mobile Networks, Q2SWinet 11, pp. 51-56.
ACM (2011)

Radu, A.L, Garcia, F.D.: LeiA: a lightweight authentication protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 283-300. Springer, Cham (2016). doi:10.1007/
978-3-319-45741-3_15

Rajkumar, R., Lee, 1., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: 2010 47th ACM/IEEE on Design Automation Confer-
ence (DAC), pp. 731-736, June 2010

Sandaruwan, G., Ranaweera, P., Oleshchuk, V.A.: PLC security and critical
infrastructure protection. In: Industrial and Information Systems (ICIIS), pp. 81—
85. IEEE (2013)

Schiffer, V., Vangompel, D., Voss, R.: The common industrial protocol (CIP) and
the family of CIP networks. ODVA, Ann Arbor (2006)

Shahzad, A., Lee, M., Lee, Y.-K.K., Kim, S., Xiong, N., Choi, J.-Y.Y., Cho, Y.:
Real time MODBUS transmissions and cryptography security designs and enhance-
ments of protocol sensitive information. Symmetry 7(3), 1176-1210 (2015)

Slay, J., Miller, M.: Lessons learned from the maroochy water breach. In: Goetz,
E., Shenoi, S. (eds.) ICCIP 2007. IIFIP, vol. 253, pp. 73—-82. Springer, Boston, MA
(2008). doi:10.1007/978-0-387-75462-8_6

Smart, N., Babbage, S., Catalano, D., Cid, C., Weger, B. d., Dunkelman, O., Ward,
M.: Ecrypt ii yearly report on algorithms and keysizes (2011-2012). In: European
Network of Excellence in Cryptology (ECRYPT II) (2012)

Tsang, P.P., Smith, S:W.: YASIR: a low-latency, high-integrity security retrofit
for legacy SCADA systems. In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC
2008. ITIFIP, vol. 278, pp. 445-459. Springer, Boston, MA (2008). doi:10.1007/
978-0-387-09699-5_29

Urbina, D., Giraldo, J., Tippenhauer, N.O., Cardenas, A.: Attacking fieldbus com-
munications in ICS: applications to the SWaT testbed. In: Proceedings of Singapore
Cyber Security Conference (SG-CRC), January 2016

Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth-a simple, backward
compatible broadcast authentication protocol for CAN bus. In: ECRYPT Work-
shop on Lightweight Cryptography, vol. 2011 (2011)

Wang, W., Lu, Z.: Cyber security in the smart grid: survey and challenges. Comput.
Netw. 57(5), 1344-1371 (2013)

Weinberger, S.: Computer security: is this the start of cyberwarfare? Nature 174,
142-145 (2011)

Wright, A.K., Kinast, J.A., McCarty, J.: Low-latency cryptographic protection for
SCADA communications. Acns 3089, 263-277 (2004)

