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ABSTRACT
In this work, we address the problem of designing and implement-
ing honeypots for Industrial Control Systems (ICS). Honeypots are
vulnerable systems that are set up with the intent to be probed and
compromised by attackers. Analysis of those attacks then allows
the defender to learn about novel attacks and general strategy of
the attacker. Honeypots for ICS systems need to satisfy both tradi-
tional ICT requirements, such as cost and maintainability, and more
specific ICS requirements, such as time and determinism.

We propose the design of a virtual, high-interaction and server-
based ICS honeypot to satisfy the requirements, and the deploy-
ment of a realistic, cost-effective, and maintainable ICS honeypot.
An attacker model is introduced to complete the problem statement
and requirements.

Based on our design and the MiniCPS framework, we imple-
mented a honeypot mimicking a water treatment testbed. To the
best of our knowledge, the presented honeypot implementation is
the first academic work targeting Ethernet/IP based ICS honeypots,
the first ICS virtual honeypot that is high-interactive without the
use of full virtualization technologies (such as a network of virtual
machines), and the first ICS honeypot that can be managed with a
Software-Defined Network (SDN) controller.

Keywords
Honeypots; cyber-physical systems; industrial control systems; se-
curity;

1. INTRODUCTION
Industrial Control System (ICS) security is a promising research

topic, because it combines traditional cyber-security threats with
control system security ones [32, 33]. Attacks targeting ICS, such
as the sophisticated stuxnet worm, are becoming more frequent,
and can have serious consequences (e.g., economical damages, en-
vironmental catastrophes and loss of human lives [8, 28]).

It is fundamental to harden the security of an ICS, especially in
this decade where often ICS devices are facing the Internet on a
public IP. Typical defense mechanisms include the use of industrial
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firewalls to segment the network architecture, and Intrusion Detec-
tion Systems to monitor the network traffic, and react in case of
suspicious activity.

In security research, honeypots are vulnerable systems that are
set up by defenders with the intent to be probed and compromised
by attackers. Monitoring systems will then record traces of the
attacks and actions taken. In that context, honeypots are able to
provide detailed information about the attacker’s activities, and to
defend-against, or slow-down, the ongoing attack. Honeypots are
extensively used in traditional ICT systems, but they are rarely de-
ployed in the ICS domain, mainly because of the very high asso-
ciated costs, and maintenance’s complexity. So far, little academic
work has been done in the domain of ICS honeypot design and im-
plementation.

In this work, we propose a design for realistic virtual ICS honey-
pots. Our design addresses the main challenges for ICS honeypots
related to ICT and ICS requirements (e.g., time, determinism, and
operating cost). We present an attacker model for the ICS honeypot
that captures the goals, the skills, the resources, and the entry points
of the attacker. According to the requirements of the attacker model
we then propose our architecture design. We classify the presented
ICS honeypot as server-based, and high-interaction honeypot (to
satisfy the realism constraints), and virtual (to satisfy the cost and
maintainability constraints).

We then present an implementation based on our ICS honeypot
design. The implementation leverages the MiniCPS framework,
which combines lightweight virtual network emulation with physi-
cal process, and ICS devices simulation, to help researchers simu-
lating Cyber-Physical Systems. To the best of our knowledge, the
presented honeypot implementation is the first academic work tar-
geting Ethernet/IP based ICS, the first ICS virtual honeypot that is
high-interactive without the use of full virtualization technologies,
such as a network of virtual machines, and the first ICS honeypot
that can be managed with a Software-Defined Network controller.

To show the effectiveness of the implemented honeypot, the pa-
per presents the evaluation of a honeypot that is mimicking a water
treatment testbed. The attacks on that system were conducted in the
context of a cyber-security Capture-The-Flag event. The evaluation
confirms that honeypots are a potential solution also in the ICS do-
main and that they can be integrated in an ICS defense-in-depth
scheme.

Honeypot development is a broad topic, and the paper is focusing
on the honeypot’s core functionalities such as: the network, the
physical process, the physical devices and the data retrieval. In
particular, the paper is not focusing on the data post-processing
part (e. g., no data analytics).

The rest of the paper is organized as follows: in Section 2, we
introduce ICS networks, ICS honeypots, and the MiniCPS frame-



work. The honeypot’s requirements, attacker model, and proposed
design are presented in Section 3, and the honeypot’s implementa-
tion core components, and additional benefits are presented in Sec-
tion 4. In Section 5, we present the evaluation of the implemented
system. Related work is summarized in Section 6. We conclude the
paper in Section 7.

2. BACKGROUND
We now briefly summarize ICS networks, and ICS honeypots

Then, we introduce the MiniCPS framework.

2.1 ICS Networks
Industrial Control Systems (ICS) are used to supervise and con-

trol systems such as critical infrastructure (electric power, and wa-
ter), and public transportation systems (trains, and planes). In this
work, we assume the system consists of supervisory components,
such as human-machine interfaces and servers, programmable logic
controllers, sensors, and actuators. All those components are inter-
connected through a network with a specific topology. We provide
the network topology of a generic ICS network as an example in
Figure 1.
MProgrammable logic controllers PLCs are the core controllers

of an ICS. Each device runs a program, also known as control logic,
that is able to perform many tasks such as: reading values from
a sensor, requesting specific values from other PLCs, and driving
an actuator. If the ICS can be divided into stages, then each PLC
typically controls one of these stages.
MSensors and actuators Those components interface with the phys-

ical process, and they are either directly connected, or indirectly
connected, via remote input/output units (RIOs) or PLCs, to the
network.
MNetwork Devices An ICS uses different types of network de-

vices. Industrial switches and firewalls are deployed to segment the
network into layers (e. g., DMZ, and control network). Gateway de-
vices are used to translate one protocol into another (e. g., Modbus
into Modbus/TCP). Remote Terminal Units (RTUs) are deployed
on the filed to collect and send data back to the SCADA system.
We also note that industrial Ethernet switches are often focused
on electrical reliability, rather than IP-layer functionality (e.g. the
Rockwell Automation Stratix 5900 switch).
MNetwork Topology Traditionally, ICS follows standard like RS-

232 to connect together different components. Additionally, alter-
native field bus schemes, such as RS-485 and PROFIBUS, have
been used. In specific situations where reliability is a major con-
cern, ring [5] topologies are widely used in practise due to ease
of deployment, and single-point-of-failure tolerance with very low
reaction time.
MIndustrial protocols In recent years, ICS networks are transi-

tioning to traditional ICT technology like Ethernet (IEEE 802.3),
and TCP/IP. However, the need for reliability, and interoperability
with existing equipment led to the development of customized in-
dustrial protocols, such as Ethernet rings, and Ethernet/IP (ENIP) [21].
We now discuss the main ENIP features as an illustrative exam-
ple of an industrial protocol. ENIP is a Real Time Ethernet (RTE)
field bus based on TCP/IP, with a custom application layer designed
to meet typical industrial communications requirements, like time
constraints, and packet determinism. Technically, ENIP is an Eth-
ernet based implementation of the Common Industrial Protocol,
and it is defined in the IEC 61784-1 standard [10]. A PLC uses
CIP messages to obtain sensor readings, to query another compo-
nent, to set configuration options, to update its firmware, and even
download a new control logic. In that model, sensor readings and
control values are represented by tags, that are like variable names
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Figure 1: Example local network topology of a plant control
network.

in a programming languages. CIP uses a request-response model,
and such requests can operate on tags, and on the meta-data asso-
ciated with the tags.
MTopology layers ICS networks typically are layered in differ-

ent zones (more details in [20, 24]). On the lowest layer, controller
devices are connected to sensors and actuators, or to remote in-
put/output (RIO) devices, capable of converting raw sensors and
actuators signals into Ethernet-based packets. The next layer will
connect together the controller devices, and the additional devices
such as: Human-Machine-Interface (HMI), engineering worksta-
tion, and historian server. For simplicity, all these devices are of-
ten kept in the same IP-layer sub-network, although more complex
topologies are possible.

2.2 ICS Honeypots
A honeypot is a system intended to be probed, attacked and com-

promised [29]. Historically, the idea behind the development of
modern honeypots comes from the nineties, where skilled com-
puter programmers and system administrators were playing in real
time with the attackers, to gain information about their targets, tech-
niques, exploited vulnerabilities and ultimately for fun [4, 31].

Honeypots can be classified by means of different orthogonal
features. Real honeypots use real physical devices to replicate the
target system. They are the most realistic solution, however in the
ICS domain their deployment is too expensive in terms of money,
maintenance and space. On the other hand, virtual honeypots uti-
lize virtualization technologies, such as PLC emulators, to repro-
duce a system, and they offer a compact, and low-cost solution.
Hybrid honeypots include a mixture of virtual and real devices, and
they might be an interesting cost-effective solution for the ICS do-
main.

One of the core aspect of an honeypot is its level of realism.
Low-interaction honeypots simulate only specific systems services
(such as a telnet daemon), providing a narrow attack surface. In-
deed they are easy to develop, configure, and secure against the
attacker. However, the effectiveness of a low-interaction honeypot
in the ICS domain is questionable, mainly because the ultimate tar-
gets of an ICS attack are the physical process and the ICS devices,
and these parts are not simulated by low-interaction honeypots. In
contrast, high-interaction honeypots use real services running on
real Operating Systems, such as a webserver running on Linux lis-
tening to port 80, or simulate the services and the relevant parts of
an Operating System. High-interaction honeypots provides a realis-
tic environment for the attacker, a large attack surface, and they are
tricky to implement, and secure against a motivated attacker. To the
best of our knowledge, in the context of ICS honeypot there is no
standard definition regarding high-interaction honeypots. The pa-



per defines an high-interaction ICS honeypot as an honeypot able
to simulate both the physical process, and the ICS devices’ con-
trol logic, and to emulate the ICS network using industrial protocol
stacks, and network topologies.

Honeypots have different roles with respect to the attacker. Server-
based honeypots expose, over an insecure channel, a number of
vulnerable services, that are passively listen to well-known ports.
In simple words, a server-based honeypot is passively waiting to
be attacked. In contrast, a client-based honeypot acts as vulnerable
client application, such as a web browser, and it actively looks for
an attack from a malicious webserver.

Honeypots are used in different contexts. Research honeypots
implement well-known vulnerabilities to lure attackers, and to study
their behaviours, or (less often) for educational and security train-
ing purposes. Production honeypots are supposed to be more se-
cure, and they are deployed to defend a system against an attacker.
In the best case, the production honeypot will prevent the attacker
to sabotage the real system, in the average case it will slow-down
the attack, and hopefully will increase the attacker frustration, and
in the worst case it will help the attacker to complete his job.

It is important to emphasize that ICS honeypots present addi-
tional requirements compared to traditional ones, most importantly
time and determinism constraints. An ICS device has to complete
a sequence of tasks within a critical time interval, and in a precise
order, that’s way it uses a Real Time Operating System with a deter-
ministic scheduler. In the same manner, ICS packets are sent over
the network with a specific order, and they had to reach their des-
tinations within a time period, that’s why industrial protocols, such
as Ethernet/IP, are extended with special application layer features
to address these requirements. An ICS honeypot has to take into
account these factors with great care, otherwise the attacker can
easily detect the honeypot with simple tests.

There are many academic and industrial projects involving hon-
eypots. In the domain of traditional network security we have hon-
eynets, that are networked honeypots able to communicate among
themselves in a NIDS fashion [11]. In the context of ICS and
SCADA the most well known (still active) project is Conpot [34],
an open-source ICS/SCADA honeypot, that is part of a large-scale
project called The Honeynet Project [30].

2.3 MiniCPS Framework
MiniCPS [2] is a toolkit for security research on Industrial Con-

trol System (ICS) security. It builds on top of a lightweight Linux
network emulator called Mininet [15], and it extends its application
to the ICS domain.

MiniCPS combines network emulation, physical process simu-
lation, and ICS devices simulation to build a real-time, ICS simula-
tion in-a-Box. It is a framework written in Python, and it provides
an high-level, object-oriented, public API. MiniCPS is developed
using modern and agile techniques, like distributed source version
control, test-driven development, build and documentation automa-
tion, and it is free and open source (MIT license) [1].

In this work, we propose to extend MiniCPS in the context of
ICS honeypots. Those honeypots traditionally lack a realistic net-
work sub-systems or focus on the simulation of a single ICS device,
like a PLC. With the help of MiniCPS, we can reproduce the exact
ICS network topology with PLCs, HMI, middle boxes, etc.. We can
use the same network configuration as the real ICS, to take care of
the attacker host enumeration, and fingerprinting phase (e. g., same
IP, MAC, and net masks). From the emulated network the attacker
may discover real ICS services, listening to standard ports, such
as ssh or VPN servers. Furthermore, MiniCPS supports link shap-

ing, meaning that each host can be configured with a custom link
bandwidth, packet loss rate, and time latency.

MiniCPS’s public API can reduce the honeypot’s development
time, and increase the portability of the developed code across dif-
ferent simulation experiments, involving different physical processes
and industrial protocols. The public API is built against four core
methods: set, get, send and receive. Each device in the simu-
lated ICS inherits (a subset of) these methods according to its func-
tionality. For example, a PLC is able to get (read) a sensor value,
and set (write) an actuator command, additionally a PLC can send
(serve) a packet over the wire, or receive (request) a packet from
the wire.

3. HIGH-INTERACTION, VIRTUAL
ICS HONEYPOT DESIGN

3.1 Problem Statement
In this work, we address the problem of designing an ICS hon-

eypot with the following requirements:
• Realistic, with multiple services supported.
• Low cost, in terms of hardware, software, and deployment

time.
• Reconfigurable, to allow extensibility, scalability, and secure

maintenance.
• Targeting the ICS domain, dealing with physical processes,

physical devices, industrial protocols, time, and determinism
constraints.

• Usable both for research, and production.
To the best of our knowledge, there exists no related work that

presents a solution able to satisfy the outlined requirements. Given
the ICS honeypot classification criteria, and related tradeoff pre-
sented in Section 2, we are proposing the design of a virtual, high-
interaction, server-based ICS honeypot, to solve our problem. In
the remaining part of the section we will present the reference at-
tacker model, and the related system architecture.

3.2 Attacker Model
In this section we present the reference attacker model. We as-

sume that attacker reaches the honeypot over the Internet, e. g.,
finding an honeypot’s Internet facing device using general purpose
search engines, such as Google, or more targeted ones such as
Shodan [19]. Once connected to the ICS internal network, the at-
tacker is able to fingerprint the target ICS system, using tools such
as nmap, and xprobe2. As result, the attacker is able to obtain basic
system information, such as the number of devices, their addresses,
their ports status, and the type of industrial protocol.

We assume that the attacker has a basic knowledge about not-
well documented industrial protocols, such as Ethernet/IP, and ex-
tensive knowledge about well documented ones, such as Modbus,
and DNP3. The attacker may also be familiar with the underlying
physical process, and control logic.

We assume that the attacker connects to the honeypot only through
the intentionally vulnerable interfaces, and that the provided inter-
faces define the initial attacker surface. For example, if the attacker
connects to a VPN server, using default credentials, then he can
only interact over the network. Nothing prevents the attacker from
escalating his privileges within the honeypot, for example once
connected to the internal network, the attacker may discover an in-
tentionally vulnerable gateway device, and get a root shell on that
device.

We assume that the attacker interacts with the physical processes,
and the ICS devices both as a fair, and malicious device. For exam-
ple, the attacker as a malicious device may send malformed packet,
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Figure 2: High-Interaction Virtual ICS Honeypot vs. Real ICS
Architecture.

unauthorized commands, perform Man-in-the-Middle attacks (both
passive and active), and try to Denial-of-Service the honeypot.

We are limiting the attacker model to what we think is a reason-
able scenario. We understand that there are more powerful attacker
models, such as the ones profiling a disgruntled employee or an in-
sider threat, however we reserve the option to extend the presented
honeypot design, and implementation to deal with these kind of
attacks in future work.

3.3 System Architecture
The main contribution of the paper is the design, implementa-

tion, and evaluation of a realistic, low-cost, and reconfigurable hon-
eypot targeted to ICS. In this section we present our design points
according to the requirements presented in Section 3.1, and the at-
tacker model presented in Section 3.2.

We classify the presented honeypot as follows:
• Virtual (lightweight virtualization).
• High-interaction.
• Server-based.
• Targets ICS requirements.
• Research and Production usage.

The use of virtualization allows us to implement a low-cost so-
lution, that is easy to configure, reproduce, deploy, and maintain.
High interaction is crucial to support multiple services and to keep
the attacker busy as long as possible. Our honeypot is server-
based, because it has to expose realistic services, listening on stan-
dard ports that are accessible from outside the ICS internal net-
work perimeter. We envision that our honeypot could be used both
in research and production environments. Researchers could use
the honeypot system to learn about novel threats in the wild, while
plant operators could use the honeypot system to detect specific
threats targeted to their system, or mitigate ongoing attacks.

Figure 2 shows an high-level comparison between the presented
honeypot architecture and a real ICS architecture. As dictated by
the attacker model, our attacker comes over the Internet, and he can
access the fake ICS internal network using two different vulnerable
interfaces that he may discover during the attack reconnaissance
phase. The first interface will give the attacker access to the honey-
pot over the network, in the figure we are using a vulnerable VPN
server as an example. The second interface will give the attacker a
command line interface on an ICS device connected to the internal
network, in Figure 2 we are using a vulnerable gateway device as
an example.

An emulated network enables us to reproduce the same network
topology as the real ICS, with the same number of hosts, addresses,
and link characteristics. The emulated hosts send packet over the

virtual network using real protocol stacks (e. g., Ethernet/IP or ARP).
A set of simulated devices reproduces the control logic of the ICS
system, and a physical process simulation mimics the real physical
process. With those modular settings, we can separate the indi-
vidual device control logics, and the physical process simulation in
different sub-systems, allowing to reuse the blocks according to the
honeypot initial configuration.

The ICS block is represented with dashed lines, to underline
the fact that the proposed design physically separate the honeypot
network from the real ICS one. In contrast, traditional honeypots
are deployed inside the internal network, using unallocated IP ad-
dresses, and their separation from the real system is logical, typi-
cally by means of a firewall, a router or an ARP proxy. The phys-
ical separation between the honeypot and the real ICS provides an
additional layer of security for free, meaning that an attacker who
gained (privileged) access to the honeypot is not connected to the
real ICS network, but to a virtualized emulated replica.

We explicitly focus on the design, and implementation of the
core honeypot functionalities such as physical layer and network
layer interaction, or data collection. In particular, we are not fo-
cusing on the data post-processing and analysis, and we refer to
existing frameworks such as [23].

3.4 Qualitative Metrics
We stated that realism is one of our goals. Our assumption is

that realism is required to attract interesting attackers. In partic-
ular, more knowledgeable attackers might recognize that they are
interacting with a honeypot more quickly if the realism of the hon-
eypot is lower. In practise, it can be hard to measure realism in
a quantitative way. In the following, we propose some qualitative
metrics to determine to which degree our honeypot represents a re-
alistic system faithfully. To the best of our knowledge, there do not
exist common metrics for such an evaluation so far.

We will use the following metrics later in the evaluation sec-
tion to specify a summary of our honeypot prototype capabilities
(e. g., honeypot provides feature 1, and does not provide feature 2).
The following metrics are complementary to the proposed attacker
model, and to the set of already presented requirements. We de-
cided to divide the metrics into two categories: network and physi-
cal, and each category into sub-categories.

Our network metrics:
• Network Parameters: IP, MAC and netmask addresses are

identical to a real systems.
• Link Shaping: average packet loss, delay, and bandwidth can

be set to comparable values as found in real systems.
• Infrastructure: The network topology is matching the real

system exactly.
• Protocol: communications between devices in the honeypot

use standard-compliant implementations of industrial, and
common protocols (e. g., ARP, HTTP, DHCP).

• Advanced traffic properties: perfect sequence of messages
and delay, matching a real system identically.

Our physical metrics:
• Process: The physical process simulation uses a realistic math-

ematical model of the process (with time steps < 1 minute).
• Devices: The honeypot provides real time simulation of sen-

sor readings, actuator driving, and control logic.
• Human operator: the honeynet allows to simulate interac-

tions of human operations.
• Advanced process: Simulation fast state change (e. g., tran-

sient, time steps < 1 s).
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4. HONEYPOT IMPLEMENTATION WITH
MINICPS

Our honeypot implementation is based on the MiniCPS frame-
work described in Section 2.3. To the best of our knowledge, the
presented honeypot implementation is the first academic work tar-
geting Ethernet/IP based ICS, the first ICS virtual honeypot that is
high-interactive without the use of full virtualization technologies,
such as a network of virtual machines, and the first ICS honeypot
that can be managed with a Software-Defined Network controller.

Figure 3 presents the basic building blocks of our implementa-
tion, using Ethernet/IP as the reference industrial protocol. The
vulnerable, Internet-facing devices are connected to the internal
network, and they are the attacker’s baits. A virtual switch is dis-
tributing Ethernet/IP traffic in the internal network, enabling ARP
poisoning attacks, packet sniffing, and malicious command deliv-
ery. Every simulated host is connected to the virtual network, and it
is exposing real services. For example, PLC1 may expose an Eth-
ernet/IP server for explicit messaging, listening on standard TCP
port 44818, that is addressable with realistic tag names, and pre-
loaded with realistic tag values. Another example is a Human Ma-
chine Interface (HMI), that exposes an HTTP configuration inter-
face through a webserver listening on port 80.

We now provide details on the implementation of the vulnerable
VPN endpoint, the vulnerable gateway device, the simulated ICS
devices, the network emulation, and the data collection subsystem.
Finally, we describe additional benefits discovered during imple-
mentation time.

4.1 Vulnerable VPN Endpoint
Virtual Private Network (VPN) are widely used in ICS network

to establish a secure channel between a host located outside the
control network, and a network interface inside the control net-
work.

Our target hardware platform is an Allen-Bradley Stratix 5900
Router, with firewall capabilities. The target device runs an IPv4,
OpenConnect (Cisco) VPN server, reachable from the Internet with
weak credentials: user is admin, and password is admin. Given
this vulnerable VPN server, the attacker is able to get an IP in the
internal network, and interact with the honeypot through the virtual
network interface associated with that IP.

We support the OpenConnect VPN server using one of its open
source implementations: ocserv. Our emulated network has a
dedicated firewall host with IP 192.168.1.76 that is listening on
default port 443.

4.2 Vulnerable Gateway Device
Gateway devices are used in ICS control network to translate

industrial protocols, such as back and forth from Modbus to Mod-
bus/TCP, and extend the inter-device communication capabilities
of the whole ICS (similar to NAT).

Our target hardware platform is Moxa OnCell IP gateway, that is
able to connect to the testbed over cellular networks using differ-
ent technologies such as: GPRS, EDGE, UMTS, and HSDPA. The
target device has two configuration ports open: a telnet server is lis-
tening on port 23, and a ssh server is listening on port 22. The ssh
service is configured with weak credentials: username is admin and
password is admin. The telnet service is configured with plaintext-
based unencrypted authentication, with the same weak credentials
as the ssh server. Given such a configuration, the attacker is able
to get a command shell on the gateway device, that is directly con-
nected to ICS internal network.

We support ssh and telnet servers through sshd, and telnetd.
Our emulated network has a dedicated 3G Gateway host, with IP
192.168.1.77, that is listening on port 22 and port 23. The hon-
eypot shell is chrooted, and the fake file system mimics the one
of the gateway device. In the ssh case, the chroot jail is specified
directly in the sshd’s server configuration file, taking advantage of
OpenSSH’s convenient ChrootDirectory feature [6].

4.3 Network Emulation
The network emulation, and the virtual network hosts isolation

is implemented by Mininet using a low-level feature of the Linux
kernel, called container-based virtualization. Container-based vir-
tualization takes advantage of Linux network namespaces, and vir-
tual Ethernet links, known as veth, to isolate subsets of processes.
Each collection of processes is called a container, and it has a com-
plete virtualized Linux network stack associated (e. g., IP, ARP, and
route tables). Each container interface is connected to the software
switch’s virtual interface through a veth. The net effect is an emu-
lated virtual network, this is the reason why the proposed honeypot
runs in-a-Box.

The link shaping feature is implemented using another low level
Linux kernel functionality that can be accessed through the tc pro-
gram. Tc allows to monitor, and manipulate the network traffic
control setting for each active network interface. Indeed, it is easy
for use to set custom bandwidths, delays, and packet loss for each
container in our honeypot.

Finally, the proposed network emulation implementation is able
to run any (industrial) protocol stack available for Linux. The pa-
per focuses on Ethernet/IP (ENIP), a modern object-oriented in-
dustrial protocol. ENIP is supported through the cpppo Python
module [14].

4.4 Physical Process and Devices Simulation
The honeypot is simulating a water treatment physical process,

an HMI, and four PLCs using a collection of python scripts. The
PLCs logic mirrors the one described in the water treatment testbed
operational manual, with the same control flow acting on real tag
names, values, and types. Interlocks are simulated as well: for
example, PLC1’s logic depends upon values stored on PLC2, and
PLC3.

The physical process simulation script simulates only the hy-
draulic part of the system, in real-time. Technically, each water
tank has an inflow pipe, and an outflow pipe, both are modeled ac-
cording to the equation of continuity from the domain of hydraulics
(pressurized liquids). Where present, a drain orefice is modeled us-
ing the Bernoulli’s principle for the trajectories [35].

MiniCPS allows us to parametrize the simulation time of a water
treatment simulation. We are not using this feature in the honey-
pot because the attacker may realize that the response time is too



fast compared to the real water treatment. However, we used this
feature during other types of experiments (e. g., Man-in-the-Middle
attacks) to generate data faster than the usual. It is important to note
that the speed-up factor is bounded by the capability of the Linux
kernel scheduler to manage concurrent processes. In our case, the
speed requirements are not very high as the physical process of the
simulated water treatment system is relatively slow.

4.5 Data Collection Subsystem
The data collection subsystem involves different types of data

acquisition, that depend upon the attacker activities inside the hon-
eypot. In case of the vulnerable gateway device, that is providing a
shell to the attacker, we use standard shell logging techniques: a log
file is storing a set of records, and each record contains the times-
tamp, the username, and the issued command. We are monitoring
every user to deal with an attacker able to escalate honeypot’s priv-
ileges. The log file is periodically copied to a safe location, outside
the honeypot.

For the vulnerable VPN server we use standard network traffic
logging techniques. Multiple tcpdump daemons are attached to the
vulnerable network interfaces, and they are generating pcap cap-
ture files. Eventually, these files can be post-processed using more
sophisticated network analysis tools, such as wireshark.

Additionally, the honeypot includes a software keylogger pro-
gram, running with root privileges, and masked from user-space
memory. The keylogger is generating a log file with all the entered
keystrokes, and it is able to deal with more motivated attackers, that
for example might use obfuscation, and encryption techniques to
transfer their malicious payloads. This is a key difference between
the effectiveness of a honeypot versus a (signature-based) NIDS.
The NIDS is not able to recognize an encrypted malware sent by
the attacker to the target machine, in contrast the honeypot key-
logger will log the decryption phase of the malware on the target
machine, detecting the attack, and providing precious information
about the attacker’s tactics.

4.6 Implementation Benefits and Risks
It is important to notice that a good implementation yields ad-

ditional benefits, that typically are not captured during the design
phase. In this section we will present some of the additional bene-
fits provided by the MiniCPS framework.

In the problem statement, we target an honeypot usable both for
research, and production. MiniCPS is based on lightweight vir-
tualization, and allows us to configure the security level of the
honeypot parametrically, at start-up time. By security level, we
mean the amount of vulnerabilities deliberately included in our
services, indeed a research honeypot will be pre-configured with
a medium, or low security level, and a production honeypot will
be pre-configured with a high security level. For example the lat-
est version of an ssh server is installed in the high-security honey-
pot, and an older vulnerable version is installed in the low/medium-
security honeypot. One can even think to patch a service, introduc-
ing trivial vulnerabilities, like default ssh admin credentials, for the
low-security honeypot. Additionally, if the attacker manages to ex-
ploit the high-security production honeypot, we will most probably
discover a new vulnerability, or a new exploitation technique.

MiniCPS allows to extend our honeypot from a virtual to an hy-
brid configuration. As discussed in Section 2, an hybrid honey-
pot presents a mixture of real and virtual devices and it is a cost-
effective solution in the ICS context. Technically, a hybrid honey-
pot can be categorized as an hardware-in-the-loop simulation, and
this setting increase the level of realism of the honeypot and also
the complexity of its design and implementation. We have access

to spare PLCs in our lab, and in the future we plan to perform ex-
periments with a hybrid honeypot and compare the results against
our virtual honeypot.

MiniCPS allows to connect different ICS instances together and
to a real network. This feature enables the possibility to deploy a
virtual ICS honeynet, that is a network of (virtual) ICS honeypots
that can be accessed over the Internet and can collaborate to manage
more advanced attack scenarios. For example, an honeynet might
be able to manage multiple attackers attacking at the same time,
redirecting each attack to a dedicated honeypot instance.

Finally, MiniCPS supports Software Defined Network (SDN) de-
velopment natively [9]. In the default setting, the honeypot SDN
controller is idle and it is not visible by the attacker. Nothing pre-
vents us to actively using the honeypot SDN controller. For ex-
ample, we may develop specific ICS control plane logics, able to
extend the functionalities of our honeypot, such as data analytics,
deep packet inspection, and detection mechanisms.

It is worth mentioning that the following implementation intro-
duces the typical risks of a high-interaction honeypot. For example,
if the attacker is able to escalate privileges inside the honeypot, we
consider that honeypot useless (e. g., the attacker may send false
values to the data collection subsystem). The attacker may also be
able to penetrate the honeypot using a side channel, but this sce-
nario is not captured by the presented attacker model, indeed is out
of scope for this paper. Finally, we understand that it is really dif-
ficult to protect the honeypot against a knowledgeable attacker, but
still the physical isolation between the honeypot, and the real ICS
system will protect the real ICS anyway.

5. EVALUATION

5.1 Evaluation Context
In this section, we present a preliminary evaluation of our hon-

eypot in the context of a Capture-The-Flag (CTF) competition. The
competition was a part of broader ICS security event, called SWaT
Security Showdown (S3), and hosted by Singapore University of
Technology and Design (SUTD) in July 2016.

CTF are educational cyber-security competitions, hosted, online
and offline, by Universities, private companies, and non-profit orga-
nizations. There are two standard types of CTF: jeopardy-style and
attack/defense. A jeopardy-style CTF involves a set of challenges,
divided by category (e. g., reversing, exploiting, and cryptography),
and each challenge is presented with a short description, a number
of clues, and an amount of reward points. Each team scores points
solving these challenges, and the solution usually consists in a mes-
sage to be entered in the CTF’s scoring system. An attack/defense
CTF involves a set of machines running vulnerable services, given
to the participating teams, and connected on the same LAN. To
score points, each team has both, to defend its services from the
other teams (e. g., by patching a vulnerable service), and to attack
the services protected by the contender teams (e. g., by login as
admin on a webserver). Usually the given machines settings are
not known a-priori by the teams, this is a key point to augment the
learning experience of the participants. In both cases, the CTF stars
and ends at prescribed time, and the team that scores most points
wins.

SWaT Security Showdown’s CTF involved different instances
of our honeypot, one for each participating team, pre-loaded with
different CTF challenges. In particular, the honeypots were simu-
lating the hydraulic part of a subset of the Secure Water Treatment
(SWaT) testbed. SWaT is a state-of-the-art water treatment testbed
located at SUTD, consisting of six stages managed by six control
devices. There are many interesting details about the SWaT testbed,



but they are out of scope, indeed they are omitted from the discus-
sion. To understand the remaining part of this section, it is sufficient
to know that: each honeypot included several simulated compo-
nents, in particular: four Programmable Logic Controllers (PLCs),
a Human Machine Interface (HMI), two water tanks (named Raw
water tank, and Ultra-filtration tank), and a vulnerable gateway de-
vice, that Ethernet/IP was the spoken industrial protocol, and that
we connected the simulated devices in a star topology, recreating
one layer of the SWaT control network. Notice that, we exposed
only one vulnerable interface over the Internet, because S3’s CTF
already assumed that the attacker knew the (vulnerable) ICS entry
point.

5.2 CTF and Honeypot Setup
In this section we will provide a brief description abut the CTF’s

scoring system, and the honeypots’ setup,
The CTF scoring system was implemented as a web application

(webapp), using the flask Python framework [26]. The webapp au-
thentication was based on username and passwords, and we used
Let’s Encrypt to encrypt the webapp’s ingoing and outgoing traffic,
via HTTPS [13]. Each challenge could be solved entering the flag
using an HTML form field. We decided to log all the scoreboard’s
user input to understand common errors, and detect brute-force at-
tempts.

The honeypot setup was the most complex task. For network se-
curity reasons, we decided to run all the honeypots “in the cloud”,
using Amazon Web Services’ Elastic Compute Cloud (AWS EC2)
instances. Each honeypot ran on a single Linux kernel, using an
m3-type EC2 instance. We set up a single instance, tested it, and
then replicated it, with minimal reconfiguration issues, to accomo-
date six teams.

We decided to use ssh as the vulnerable service on the gateway
device, and we assumed that the attacker already had obtained the
credential to access it. That is why we distributed a (different)
private key for each team to login inside the honeypot as the at-

tacker user. Each instance was running two different ssh servers,
with different configurations. One server was used by us to access
the virtual machine, and manage the honeypot. The other server
was running inside a Linux container, and the attacker was chrooted
to protect the honeypot file system and running processes. It is im-
portant to notice that, both servers were running on port 22 on their
respective networks, however we had to use port forwarding (from
port 2222 of the control network to port 22 of the honeypot net-
work), to give the attacker a ssh connection inside the honeypot
network.

5.3 Challenges Descriptions
This section describes in detail the five challenges involving our

honeypot, mimicking a subset of the SWaT’s testbed, more infor-
mation about the settings may be found in Section 5.1. The chal-
lenges’ design followed common best practices of jeopardy-style
CTF: challenges were presented in increasing order of difficulty,
and the solution of challenge x was providing useful knowledge to
solve challenge x+1.
MNetwork warm up The first challenge involves a basic under-

standing of the SWaT network topology. The challenge description
is: “Can you eavesdrop what PLC2 has to say to PLC3?”. The goal
of that challenge is to perform a passive Man-in-the-Middle attack
between PLC2 and, PLC3.
MEthernet/IP warm up The second challenge involves some un-

derstanding of the Ethernet/IP industrial protocol. The challenge
description is: “cpppo can be used in the testbed to communicate
using the Ethernet/IP protocol. Can you read the README:2 tag.”

In this case, the attacker has to understand which PLC stores the
README:2 tag, know its IP, and know how to query an Ether-
net/IP server. Python’s cpppo module is suggested because it is an
easy to use library to do the job.
MOverflow the Raw water tank The third challenge involves a

basic understanding of a water treatment industrial control system.
The challenge description is: “PLC1 is controlling the raw wa-
ter tank. It is reading the water level value addressed by the tag
LIT101:1. PLC1 is controlling a motorized input valve, addressed
by MV101:1, that can be turned ON/OFF using respectively 1/2.
PLC1 is also controlling an output pump, addressed by P101:1,
that can be turned ON/OFF using respectively 1/2. The maximum
tank level in m from the ground is 1.2. The goal is to overflow the
raw water tank.” In this case, the attacker has to understand how to
overflow a tank, based on a provided list of sensors and actuators.
MDenial of Service HMI The fourth challenge involves a basic

understanding of Denial-of-Service (DoS) attacks. The challenge
description is: “The HMI (set to manual mode) is constantly send-
ing to PLC3 the keep alive value 2. You can access this value using
the MITM:3 tag stored in PLC3. Can you change this value to 3?
If you see that the tag value has a stable 3 value, wait a little bit to
get the flag.” In this case, the attacker has to find a way to disrupt
the communications between HMI and PLC3. It is not sufficient
for the attacker to write the value three in the MITM:3 tag.
MOverflow the Ultra-filtration tank The fifth challenge involves

an advanced overflow attack on the ultra-filtration tank. The chal-
lenge description is: “The HMI (set to manual mode) is sending
commands to PLC4. PLC4 is controlling the water level using
MV301:3 and P301:3. Both can be turned ON/OFF using respec-
tively 1/2. You can query LIT301:3 to discover the actual water
level. The maximum tank level in m from the ground is 1.2. The
goal is to overflow the ultra-filtration tank.” In this case, the at-
tacker could not reuse the same techniques used for the third chal-
lenges, and he has to find a smarter way to overflow the tank.

5.4 Challenges Results
In this section we present a number of interesting statistics gath-

ered during the CTF event. We anonymized the names of partic-
ipating teams. Team 6 is explicitly excluded from the analysis,
because its members managed to eploit a side channel attack unre-
lated to the honeypot, which allowed them to bypass our honeypot
challenges.

After the CTF event we post-processed the log files, and in Ta-
ble 1 we present several interesting results. Only one team was
able to solve all the challenges, and the average number of solved
challenge per team was three. The majority of the teams used tra-
ditional reconnaissance tools such as: nmap and ping, expected
attack techniques such as: Man-in-the-Middle attacks, and used
cpppo for Ethernet/IP interaction, as suggested by us in the chal-
lenge description.

There are a number of lessons learnt by us during the CTF event,
we will present two of them. Firstly, crash recovery management.
It is important to implement an automated, and reliable honeypot’s
crash recovery sub-system, because an attacker may break the hon-
eypot in (unexpected) ways. In that case, the honeypot has to shut-
down gracefully, and restart after a reasonable time interval with
the same settings. We experienced down-time issues because the
attackers used simple bash scripts containing infinite while loops,
resulting in a DoS of some of our honeypots. We were not able to
automatically restart the targeted honeypots, and as result the of-
fending teams had to wait a couple of hours before restarting to
attack the system.

The second important lesson was related to side channel attacks



Table 1: CTF Results Summary.
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Team 1 2 20 1074 3 1 {1, 2, 6, 8}
Team 2 5 30 2488 6 2 {1, 2, 3, 4, 5, 6, 7, 8}
Team 3 3 23 2045 5 2 {1, 2, 3, 4, 6, 7, 8}
Team 4 4 27 963 5 2 {1, 2, 3, 4, 6, 7, 8}
Team 5 1 3 52 1 0 {1}

# : Number Of, LOC : Lines Of Code
*{1: ettercap, 2: nmap, 3: netstat, 4: tcpdump, 5: tshark

6: ifconfig, 7: cpppo, 8: ping}

Table 2: Honeypot metrics evaluation summary.
Metric By design Implemented

Network

IP, MAC and netmask   
Packet loss   
Packet delay   
Bandwidth   
Topology   
Common protocols   
Industrial protocol  G#
Advanced Traffic  G#

Physical

Realistic math model   
Sensor readings   
Actuators driving   
Control logic   
Human operations  G#
Advanced Process  G#
Legend  : full support, G#: partial support.

mitigation. We believe that defending a system is generally more
difficult than attacking it, because the attacker has to find one vul-
nerable hole, however the defender has to protect every holes (that
he is aware of). During the CTF, we suffered a side channel attack
on a machine that was not running on any of our honeypots. The
attack disclosed (among other things) information about the event
logistics, solutions to challenges, credentials for a web service. For
future events, we will take into account every detail of the configu-
ration process, and ensure that we protect sensible data with access
control and delete unnecessary data from places accessible to the
attacker. The last statement might sound trivial, but it can be tricky
to implement in practice, especially when multiple people are con-
figuring a complex virtualized system, running multiple services,
connected over the Internet.

5.5 Evaluation using Qualitative Metrics
In Table 2, we present an evaluation summary of our honeypot

prototype. As features, we use the metrics proposed in Section. 3.4.
The table distinguishes between features that are enabled by the
honeypot design, and the ones implemented in the evaluated pro-
totype. For example, the honeypot design is capable of providing
full industrial protocol support. However, if there is only a partial
implementation of the protocol available for Linux (as in the case

of Ethernet/IP) we have to indicate a partial support in the Imple-
mented column.

Table 2 shows that the implemented honeypot satisfies all the ba-
sic metrics, and partially satisfies the more advanced ones (such the
simulation of a human operation). Furthermore, the implemented
honeypot supports different types of attack ranging from network
attacks, such as: Man-in-the-Middle, port scanning, and service
enumeration, to physical process related ones, like tank overflows
and DoS attacks on devices.

6. RELATED WORK
It has been observed over the years Internet-facing ICS devices

are vulnerable to cyber attacks and in respect to that security as-
pects of ICS devices have been discussed in [36, 37], in particular
the author presents attack statistics and a robust attribution frame-
work by deploying a honeypot architecture in the simulated virtu-
alized ICS environment. We now review related work in detail, and
position our work against it. To the best of our knowledge, our
work and the Conpot share the most features. We summarize our
findings in Table 3.

Table 3: Our Honeypot Features vs. Related Works.
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Our work         
Scott et al. [27]    
Buza et al. [3]    
Holczer et al. [12]    
Yin et al. [22]    
Conpot [34]        
Provos et al. [25]     
Litchfield et al. [18]        
Liljenstam et al. [17]    

MDesign and Implementation of ICS honeypot In [27], Scott pro-
poses a mapping and configuration of honeypot that is similar to our
High-interaction Hybrid honeypot architecture in several ways. In
general, for honeypots to work effectively, there are two major con-
cerns. Firstly, it is needed to map the network attack surface of the
target system, and choose which services to mimic in the honeypot.
Secondly, The configuration and placement of the honeypot in the
local network needs to ensure that controlling and monitoring of
attacks can be performed and attacker activities can be logged by a
secure channel.
MPLC honeypot On the topic of PLC honeypots, the authors

of [3,12] propose a high-interaction honeypot PLC solution for se-
cure network design. The proposed implementation involves ex-
ploration and inspection of all the PLCs and the services (HTTP,
HTTPS, ISO-TSAP, and SNMP) running on PLCs in a system that
should be protected. Those services are then implemented and in-
tegrated in a Linux based Virtualized simulated environment acting
as a honeypot. In contrast to our work, the authors do not con-
sider any interactions with physical processes, and in general only
network-based interactions with the honeypot (no shell or VPN ac-
cess).

6.1 Honeypot frameworks



MIoTPOT In [22], a low interaction honeypot framework was
proposed. The authors claim that telnet based attacks on IoT de-
vices are increasing rapidly. The authors propose IoTPOT, a hon-
eypot that emulates telnet interactions of IoT devices, in order to
attract and analyze attacks against various IoT devices running on
different CPU architectures such as ARM, MIPS, and PPC. In con-
trast to IoTPOT, our proposed honeypot is focusing more on ICS
rather than IoT devices. Additionally, the proposed honeypot does
not focus on a specific protocol, such as telnet and related attacks,
but it deals with different industrial protocols and services, result-
ing in a much stronger attacker model, and much larger attacker
surface.
MConpot Conpot [34] is an open source project for industrial

control system honeypots. The honeypots can be classified as low-
interactive server side honeypots, that are implemented with fol-
lowing attributes in mind: a) Deployment of honeypot in network
should be easy b) Modification and extension of it can be done
easily. As Conpot is provided with a stack of several industrial pro-
tocols, it can interact with real devices such as HMI and PLCS, and
is capable of emulating complex infrastructures.

In contrast to Conpot, our framework allows high-interaction
honeypots. In addition, the Conpot project does not cover the host
and network virtualization aspects of our system, or enable physical
process simulation. Instead, Conpot is more related to providing li-
braries and tools to build simulated ICS components. Unlike our
work in this paper, Conpot also provides analysis functionality of
the communication and actions of the attacker. For the future, we
believe that we can strengthen the device simulation aspects of our
system with components from Conpot.
MHoneyd Honeyd [25] is an open source software framework

to configure several virtual host/honeypots in an existing network.
The honeypots can be configured with arbitrary services. The frame-
work is useful for attack detection and to collect statistics about
malware attack. Unfortunately, development of Honeyd seems to
have stopped in 2013.
MHoneyPhy HoneyPhy [18] is physics-aware honeypot frame-

work for Cyber-Physical Systems (CPS). The proposed work has a
broader scope (CPS are a superset of ICS), and claims to provide
realistic physical process, and devices simulation by means of a hy-
brid configuration. In contrast, our honeypot framework is purely
virtual, and eventually can extended to a (more expensive) hybrid
configuration.

6.2 Related ICS Simulation Frameworks
In [7], a framework similar to MiniCPS is proposed in the con-

text of Software-Defined Networking (SDN), and network intru-
sion detection for ICS. In particular, the presented system also uses
Mininet [15]. The authors do not discuss the use of Mininet frame-
work in a honeypot setting, but they discuss about a virtual network
layer built on the top of physical process, to monitor the network
status with high level of granularity. Furthermore, they demon-
strate how smart grids could be made resilient in catastrophic cir-
cumstances using SDN.

In [16], a simulator named RINSE (Real-time Immersive Net-
work Simulation Environment for Network Security Exercises) is
developed with similar intent of the proposed ICS honeypot. The
simulator claims to provide realistic and scalable network simula-
tion by using multi-resolution traffic model, and routing protocols
simulations. An extension of RINSE is proposed in [17], where
a stronger attacker model is introduced. The new attacker’s capa-
bilities include: Denial-of-Service, computer worms, and similar
large-scale attacks involving large numbers of hosts, and high in-

tensity traffic. In contrast to RINSE, the proposed ICS honeypot
does not simulate the network stack, but it uses network emulation
to provide real packets and realistic network characteristics, such as
delay, packet loss, and bandwidth. Furthermore, RINSE is devel-
oped as a training platform for network security, on the other hand
the presented ICS honeypot is designed and implemented for both
research and production purposes.

7. CONCLUSION
In this work, we presented the design of a virtual, high-interaction,

server-based ICS honeypot, which aims to provide a realistic, cost-
effective, and maintainable solution to observe and capture the ac-
tivities of the attackers. Based on that design and the MiniCPS
framework, we implemented parts of the SWaT testbed as honey-
pot.

To the best of our knowledge, the presented honeypot implemen-
tation is the first academic work targeting Ethernet/IP based ICS
honeypots, the first ICS virtual honeypot that is high-interactive
without the use of full virtualization technologies (such as a net-
work of virtual machines) and the first ICS honeypot that can be
managed with a Software-Defined Network controller.

We evaluated our implementation in the context of a capture-
the-flag event targeted to ICS, called SWaT Security Showdown.
During the event, six teams attacked six instances of our honeypot,
producing interesting results. We were able to implement a realistic
scenario, run multiple services, and generate realistic traffic over
the virtual network.

In the future, we plan to improve the crash management sub-
system, the Ethernet/IP support, the logging capabilities over the
network, and the SDN support.
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